Search results

1 – 2 of 2
Article
Publication date: 25 May 2010

Peter Greenwood, Börje S. Gevert, Jan‐Erik Otterstedt, Gunnar Niklasson and William Vargas

The purpose of this paper is to develop methods to produce white composite pigments consisting of a silica core with a titania shell.

Abstract

Purpose

The purpose of this paper is to develop methods to produce white composite pigments consisting of a silica core with a titania shell.

Design/methodology/approach

Silica cores were coated with titanium dioxide (TiO2) via forced hydrolysis of a solution prepared from titanium tetrachloride (TiCl4). The morphology, surface charge and particle size of obtained composite particles were studied.

Findings

Dispersions of well‐dispersed composite particles, having silica cores of uniform size in the range from 300 to 500 nm with a homogeneous titania coating are obtained. The coating thickness corresponded to 150‐400 per cent by weight of titania based on the core. Modification of the silica core by incorporation of 1.5 aluminosilicate sites per square nanometre of core surface proves to be favourable in achieving a homogeneous coating on the silica core. Deposition of such titania coating is also favoured by agitating the dispersion well, keeping electrolyte content low, maintaining pH at 2.0 and the temperature at 75°C during the coating process.

Research limitations/implications

Only TiCl4 is used as titania source. In addition, only silica cores obtained by Stöber synthesis are used while commercially available silica solutions made from sodium silicate are not used.

Practical implications

The process offers a method of producing a white composite pigment with a narrow particle size distribution in order to maximise light scattering as well as using a core with lower density than the shell. This kind of particle would be of interest for coating applications and white inorganic inks.

Originality/value

The developed method provides a straightforward process to produce well‐defined composite particles.

Details

Pigment & Resin Technology, vol. 39 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 September 2011

Peter Greenwood and Borje Gevert

The purpose of this paper is to study methods of reacting the surface of the particles of silica sols with silanes, primarily gamma‐glycidoxypropyltrimethoxysilane (GPTMS) and…

1120

Abstract

Purpose

The purpose of this paper is to study methods of reacting the surface of the particles of silica sols with silanes, primarily gamma‐glycidoxypropyltrimethoxysilane (GPTMS) and study some basic properties of the modified sols and the nature and structure of the silane groups attached to the particle surface.

Design/methodology/approach

The surface of the silica particles was modified by reacting the silica sols with aqueous solutions of silanes, chiefly GPTMS. The presence and structure of silane groups on the particle surface were established by Si‐NMR and C‐NMR, respectively.

Findings

Several silanes were studied but silica sols could be readily modified only with GPTMS and glycidoxypropylmethoxydiethoxysilane (GPMDES), most readily if the silanes were pre‐hydrolysed in water. Higher degrees of silylation were preferably done by continuous addition of silane. Lower degrees of modification can be achieved at room temperature by the stepwise addition of the silane solution. The silylation of the silica surface with GPTMS significantly reduces the number of charged surface groups and silanol groups. GPTMS binds covalently to the silica surface and the epoxy ring opens and transforms into a diol. Silica sols modified with GPTMS and GPMDES are stable toward aggregation.

Research limitations/implications

Only organo‐reactive silanes were studied.

Originality/value

This is the first work to study the modification by silanes of silica aquasols with high concentrations of silica. The silane modification can extend the use of silica to areas of applications previously inaccessible to silica sols.

Details

Pigment & Resin Technology, vol. 40 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Access

Year

Content type

Article (2)
1 – 2 of 2