Search results

1 – 10 of over 1000
Article
Publication date: 29 July 2014

William J. McCluskey, Dzurllkanian Zulkarnain Daud and Norhaya Kamarudin

The purpose of this paper is to apply boosted regression trees (BRT) to a heterogeneous data set of residential property drawn from a jurisdiction in Malaysia, with the objective…

Abstract

Purpose

The purpose of this paper is to apply boosted regression trees (BRT) to a heterogeneous data set of residential property drawn from a jurisdiction in Malaysia, with the objective to evaluate its application within the mass appraisal environment in Malaysia. Machine learning (ML) techniques have been applied to real estate mass appraisal with varying degrees of success.

Design/methodology/approach

To evaluate the performance of the BRT model two multiple regression analysis (MRA) models have been specified (linear and non-linear). One of the weaknesses of traditional regression is the need to a priori specify the functional form of the model and to ensure that all non-linearities have been accounted for. For a BRT model the algorithm does not require any predetermined model or variable transformations, making the process much simpler.

Findings

The results show that the BRT model outperformed the MRA-specified models in terms of the coefficient of dispersion and mean absolute percentage error. While the results are encouraging, BRT models still lack transparency and suffer from the inability to translate variable importance into quantifiable variable effects.

Practical implications

This paper presents a useful alternative modelling technique, BRT, for use within the mass appraisal environment in Malaysia. Its advantages include less intensive data cleansing, no requirement to specify the predictive underlying model, ability to utilise categorical variables without the need to transform them and not as data hungry, as for example, MRA.

Originality/value

This paper adds to the knowledge in this area by applying a relatively new ML model, BRT to residential property data from a jurisdiction in Malaysia. BRT has shown promise as a strong predictive model when applied in other disciplines; therefore this research empirically tests this finding within real estate valuation.

Details

Journal of Financial Management of Property and Construction, vol. 19 no. 2
Type: Research Article
ISSN: 1366-4387

Keywords

Abstract

Details

Machine Learning and Artificial Intelligence in Marketing and Sales
Type: Book
ISBN: 978-1-80043-881-1

Article
Publication date: 28 April 2021

Virok Sharma, Mohd Zaki, Kumar Neeraj Jha and N. M. Anoop Krishnan

This paper aims to use a data-driven approach towards optimizing construction operations. To this extent, it presents a machine learning (ML)-aided optimization approach, wherein…

Abstract

Purpose

This paper aims to use a data-driven approach towards optimizing construction operations. To this extent, it presents a machine learning (ML)-aided optimization approach, wherein the construction cost is predicted as a function of time, resources and environmental impact, which is further used as a surrogate model for cost optimization.

Design/methodology/approach

Taking a dataset from literature, the paper has applied various ML algorithms, namely, simple and regularized linear regression, random forest, gradient boosted trees, neural network and Gaussian process regression (GPR) to predict the construction cost as a function of time, resources and environmental impact. Further, the trained models were used to optimize the construction cost applying single-objective (with and without constraints) and multi-objective optimizations, employing Bayesian optimization, particle swarm optimization (PSO) and non-dominated sorted genetic algorithm.

Findings

The results presented in the paper demonstrate that the ensemble methods, such as gradient boosted trees, exhibit the best performance for construction cost prediction. Further, it shows that multi-objective optimization can be used to develop a Pareto front for two competing variables, such as cost and environmental impact, which directly allows a practitioner to make a rational decision.

Research limitations/implications

Note that the sequential nature of events which dictates the scheduling is not considered in the present work. This aspect could be incorporated in the future to develop a robust scheme that can optimize the scheduling dynamically.

Originality/value

The paper demonstrates that a ML approach coupled with optimization could enable the development of an efficient and economic strategy to plan the construction operations.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 21 February 2024

Nehal Elshaboury, Tarek Zayed and Eslam Mohammed Abdelkader

Water pipes degrade over time for a variety of pipe-related, soil-related, operational, and environmental factors. Hence, municipalities are necessitated to implement effective…

Abstract

Purpose

Water pipes degrade over time for a variety of pipe-related, soil-related, operational, and environmental factors. Hence, municipalities are necessitated to implement effective maintenance and rehabilitation strategies for water pipes based on reliable deterioration models and cost-effective inspection programs. In the light of foregoing, the paramount objective of this research study is to develop condition assessment and deterioration prediction models for saltwater pipes in Hong Kong.

Design/methodology/approach

As a perquisite to the development of condition assessment models, spherical fuzzy analytic hierarchy process (SFAHP) is harnessed to analyze the relative importance weights of deterioration factors. Afterward, the relative importance weights of deterioration factors coupled with their effective values are leveraged using the measurement of alternatives and ranking according to the compromise solution (MARCOS) algorithm to analyze the performance condition of water pipes. A condition rating system is then designed counting on the generalized entropy-based probabilistic fuzzy C means (GEPFCM) algorithm. A set of fourth order multiple regression functions are constructed to capture the degradation trends in condition of pipelines overtime covering their disparate characteristics.

Findings

Analytical results demonstrated that the top five influential deterioration factors comprise age, material, traffic, soil corrosivity and material. In addition, it was derived that developed deterioration models accomplished correlation coefficient, mean absolute error and root mean squared error of 0.8, 1.33 and 1.39, respectively.

Originality/value

It can be argued that generated deterioration models can assist municipalities in formulating accurate and cost-effective maintenance, repair and rehabilitation programs.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 3 April 2019

Michael Mayer, Steven C. Bourassa, Martin Hoesli and Donato Scognamiglio

The purpose of this paper is to investigate the accuracy and volatility of different methods for estimating and updating hedonic valuation models.

Abstract

Purpose

The purpose of this paper is to investigate the accuracy and volatility of different methods for estimating and updating hedonic valuation models.

Design/methodology/approach

The authors apply six estimation methods (linear least squares, robust regression, mixed-effects regression, random forests, gradient boosting and neural networks) and two updating methods (moving and extending windows). They use a large and rich data set consisting of over 123,000 single-family houses sold in Switzerland between 2005 and 2017.

Findings

The gradient boosting method yields the greatest accuracy, while the robust method provides the least volatile predictions. There is a clear trade-off across methods depending on whether the goal is to improve accuracy or avoid volatility. The choice between moving and extending windows has only a modest effect on the results.

Originality/value

This paper compares a range of linear and machine learning techniques in the context of moving or extending window scenarios that are used in practice but which have not been considered in prior research. The techniques include robust regression, which has not previously been used in this context. The data updating allows for analysis of the volatility in addition to the accuracy of predictions. The results should prove useful in improving hedonic models used by property tax assessors, mortgage underwriters, valuation firms and regulatory authorities.

Details

Journal of European Real Estate Research, vol. 12 no. 1
Type: Research Article
ISSN: 1753-9269

Keywords

Article
Publication date: 9 August 2023

Siyu Su, Youchao Sun, Chong Peng and Yuanyuan Guo

The purpose of this paper is to identify the key influencing factors of aviation accidents and to predict the aviation accidents caused by the factors.

Abstract

Purpose

The purpose of this paper is to identify the key influencing factors of aviation accidents and to predict the aviation accidents caused by the factors.

Design/methodology/approach

This paper proposes an improved gray correlation analysis (IGCA) theory to make the relational analysis of aviation accidents and influencing factors and find out the critical causes of aviation accidents. The optimal varying weight combination model (OVW-CM) is constructed based on gradient boosted regression tree (GBRT), extreme gradient boosting (XGBoost) and support vector regression (SVR) to predict aviation accidents due to critical factors.

Findings

The global aviation accident data from 1919 to 2020 is selected as the experimental data. The airplane, takeoff/landing and unexpected results are the leading causes of the aviation accidents based on IGCA. Then GBRT, XGBoost, SVR, equal-weight combination model (EQ-CM), variance-covariance combination model (VCW-CM) and OVW-CM are used to predict aviation accidents caused by airplane, takeoff/landing and unexpected results, respectively. The experimental results show that OVW-CM has a better prediction effect, and the prediction accuracy and stability are higher than other models.

Originality/value

Unlike the traditional gray correlation analysis (GCA), IGCA weights the sample by distance analysis to more objectively reflect the degree of influence of different factors on aviation accidents. OVW-CM is built by minimizing the combined prediction error at sample points and assigns different weights to different individual models at different moments, which can make full use of the advantages of each model and has higher prediction accuracy. And the model parameters of GBRT, XGBoost and SVR are optimized by the particle swarm algorithm. The study can guide the analysis and prediction of aviation accidents and provide a scientific basis for aviation safety management.

Details

Engineering Computations, vol. 40 no. 7/8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 2023

Farouq Sammour, Heba Alkailani, Ghaleb J. Sweis, Rateb J. Sweis, Wasan Maaitah and Abdulla Alashkar

Demand forecasts are a key component of planning efforts and are crucial for managing core operations. This study aims to evaluate the use of several machine learning (ML…

Abstract

Purpose

Demand forecasts are a key component of planning efforts and are crucial for managing core operations. This study aims to evaluate the use of several machine learning (ML) algorithms to forecast demand for residential construction in Jordan.

Design/methodology/approach

The identification and selection of variables and ML algorithms that are related to the demand for residential construction are indicated using a literature review. Feature selection was done by using a stepwise backward elimination. The developed algorithm’s accuracy has been demonstrated by comparing the ML predictions with real residual values and compared based on the coefficient of determination.

Findings

Nine economic indicators were selected to develop the demand models. Elastic-Net showed the highest accuracy of (0.838) versus artificial neural networkwith an accuracy of (0.727), followed by Eureqa with an accuracy of (0.715) and the Extra Trees with an accuracy of (0.703). According to the results of the best-performing model forecast, Jordan’s 2023 first-quarter demand for residential construction is anticipated to rise by 11.5% from the same quarter of the year 2022.

Originality/value

The results of this study extend to the existing body of knowledge through the identification of the most influential variables in the Jordanian residential construction industry. In addition, the models developed will enable users in the fields of construction engineering to make reliable demand forecasts while also assisting in effective financial decision-making.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 21 October 2021

Diego Silveira Pacheco de Oliveira and Gabriel Caldas Montes

Given the importance of credit rating agencies’ (CRAs) assessment in affecting international financial markets, it is useful for policymakers and investors to be able to forecast…

Abstract

Purpose

Given the importance of credit rating agencies’ (CRAs) assessment in affecting international financial markets, it is useful for policymakers and investors to be able to forecast it properly. Therefore, this study aims to forecast sovereign risk perception of the main agencies related to Brazilian bonds through the application of different machine learning (ML) techniques and evaluate their predictive accuracy in order to find out which one is best for this task.

Design/methodology/approach

Based on monthly data from January 1996 to November 2018, we perform different forecast analyses using the K-Nearest Neighbors, the Gradient Boosted Random Trees and the Multilayer Perceptron methods.

Findings

The results of this study suggest the Multilayer Perceptron technique is the most reliable one. Its predictive accuracy is relatively high if compared to the other two methods. Its forecast errors are the lowest in both the out-of-sample and in-sample forecasts’ exercises. These results hold if we consider the CRAs classification structure as linear or logarithmic. Moreover, its forecast errors are not statistically associated with periods of changes in CRAs’ opinion of any sort.

Originality/value

To the best of the authors’ knowledge, this study is the first to evaluate the performance of ML methods in the task of predicting sovereign credit news, including not only the sovereign ratings but also the outlook and credit watch status. In addition, the authors investigate whether the forecasts errors are statistically associated with periods of changes in sovereign risk perception.

Details

International Journal of Emerging Markets, vol. 18 no. 10
Type: Research Article
ISSN: 1746-8809

Keywords

Article
Publication date: 28 June 2021

Meseret Getnet Meharie, Wubshet Jekale Mengesha, Zachary Abiero Gariy and Raphael N.N. Mutuku

The purpose of this study to apply stacking ensemble machine learning algorithm for predicting the cost of highway construction projects.

Abstract

Purpose

The purpose of this study to apply stacking ensemble machine learning algorithm for predicting the cost of highway construction projects.

Design/methodology/approach

The proposed stacking ensemble model was developed by combining three distinct base predictive models automatically and optimally: linear regression, support vector machine and artificial neural network models using gradient boosting algorithm as meta-regressor.

Findings

The findings reveal that the proposed model predicted the final project cost with a very small prediction error value. This implies that the difference between predicted and actual cost was quite small. A comparison of the results of the models revealed that in all performance metrics, the stacking ensemble model outperforms the sole ones. The stacking ensemble cost model produces 86.8, 87.8 and 5.6 percent more accurate results than linear regression, vector machine support, and neural network models, respectively, based on the root mean square error values.

Research limitations/implications

The study shows how stacking ensemble machine learning algorithm applies to predict the cost of construction projects. The estimators or practitioners can use the new model as an effectual and reliable tool for predicting the cost of Ethiopian highway construction projects at the preliminary stage.

Originality/value

The study provides insight into the machine learning algorithm application in forecasting the cost of future highway construction projects in Ethiopia.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 7
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 23 November 2022

Ibrahim Karatas and Abdulkadir Budak

The study is aimed to compare the prediction success of basic machine learning and ensemble machine learning models and accordingly create novel prediction models by combining…

Abstract

Purpose

The study is aimed to compare the prediction success of basic machine learning and ensemble machine learning models and accordingly create novel prediction models by combining machine learning models to increase the prediction success in construction labor productivity prediction models.

Design/methodology/approach

Categorical and numerical data used in prediction models in many studies in the literature for the prediction of construction labor productivity were made ready for analysis by preprocessing. The Python programming language was used to develop machine learning models. As a result of many variation trials, the models were combined and the proposed novel voting and stacking meta-ensemble machine learning models were constituted. Finally, the models were compared to Target and Taylor diagram.

Findings

Meta-ensemble models have been developed for labor productivity prediction by combining machine learning models. Voting ensemble by combining et, gbm, xgboost, lightgbm, catboost and mlp models and stacking ensemble by combining et, gbm, xgboost, catboost and mlp models were created and finally the Et model as meta-learner was selected. Considering the prediction success, it has been determined that the voting and stacking meta-ensemble algorithms have higher prediction success than other machine learning algorithms. Model evaluation metrics, namely MAE, MSE, RMSE and R2, were selected to measure the prediction success. For the voting meta-ensemble algorithm, the values of the model evaluation metrics MAE, MSE, RMSE and R2 are 0.0499, 0.0045, 0.0671 and 0.7886, respectively. For the stacking meta-ensemble algorithm, the values of the model evaluation metrics MAE, MSE, RMSE and R2 are 0.0469, 0.0043, 0.0658 and 0.7967, respectively.

Research limitations/implications

The study shows the comparison between machine learning algorithms and created novel meta-ensemble machine learning algorithms to predict the labor productivity of construction formwork activity. The practitioners and project planners can use this model as reliable and accurate tool for predicting the labor productivity of construction formwork activity prior to construction planning.

Originality/value

The study provides insight into the application of ensemble machine learning algorithms in predicting construction labor productivity. Additionally, novel meta-ensemble algorithms have been used and proposed. Therefore, it is hoped that predicting the labor productivity of construction formwork activity with high accuracy will make a great contribution to construction project management.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of over 1000