Search results

1 – 10 of over 2000
Article
Publication date: 2 February 2015

Shriram Dravid, Kartikeya Triphati and Manoj Chouksey

Bolted joints are commonly used to connect structural members. These joints can be disassembled whenever required. Various types of washers are used between nut and the connected…

Abstract

Purpose

Bolted joints are commonly used to connect structural members. These joints can be disassembled whenever required. Various types of washers are used between nut and the connected member to keep the joints tight. However, these joints often become loose over time under dynamic loading conditions. The purpose of this paper is to know the reasons of loosening of bolted joints and to identify the main parameters that contribute to the bolt loosening, and to verify them with previous work.

Design/methodology/approach

This work studies loosening of bolted joint in a test rig under varying tightening torque as well as for various types of washers used as the number of load cycles increases. Four trial runs are taken for each case considered and the average results are found out to minimize possible sources of errors. For the purpose, a specifically made test rig is used which is capable of applying harmonic load on the bolted joint by the lever action.

Findings

The study compares the loosening of bolted joint with and without washer, and also under different initial tightening conditions. This study has shown the suitability of the test rig, methodology and parameters for study of loosening in bolted joints. This study presents an indigenous test, capable of applying harmonic load on bolted joint.

Originality/value

The results establish that the methodology and parameters selected were appropriate for the purpose of study of loosening of bolted joints. This study has provided a base line for further work to understand the loosening of bolted joints.

Details

International Journal of Structural Integrity, vol. 6 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 September 1999

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the analysis and design of machine elements; bolts and screws, belts and chains, springs and dampers…

4353

Abstract

This paper gives a review of the finite element techniques (FE) applied in the analysis and design of machine elements; bolts and screws, belts and chains, springs and dampers, brakes, gears, bearings, gaskets and seals are handled. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of this paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An Appendix included at the end of the paper presents a bibliography on finite element applications in the analysis/design of machine elements for 1977‐1997.

Details

Engineering Computations, vol. 16 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 August 2018

Michael Welch

The purpose of this paper is to develop the understanding of how external loads are reacted through preloaded bolted joints and the interaction of the joint elements. The paper…

Abstract

Purpose

The purpose of this paper is to develop the understanding of how external loads are reacted through preloaded bolted joints and the interaction of the joint elements. The paper develops ideas from how to do an analysis to understanding the implications of the results.

Design/methodology/approach

Classical methods of analysis are applied to preloaded bolted joints, made with multiple bolts. The paper considers both the detailed analysis of bolts stresses, fatigue analysis and load-based design analysis, to demonstrate the structural integrity of preloaded bolted joints.

Findings

In preloaded joints the external tensile axial load and moments are mainly supported by changes in contact pressure at the faying surface. Only a small proportion of the external loads produce changes in bolt tensile stress. The bolts have a significant mean stress but experience a low working stress range. This low stress range is a factor in explaning why preloaded bolted joints have good fatigue performance.

Practical implications

In many cases the methods presented are adequate to demonstrate the structural integrity of joints. In some cases finite element methods may be more appropriate, and the methods discussed can be used in the validation process.

Originality/value

The paper brings together a number of concepts and links them into a practical design analysis process for preloaded bolted joints. Interpretation of results, within the context of design standards, is provided.

Details

International Journal of Structural Integrity, vol. 9 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 July 1981

E.P. DONALD

In this paper, the author seeks to present in easy‐to‐understand diagrams the effect of external loads on the pretensioned bolt in a bolted joint. In most cases, bolted joints are…

Abstract

In this paper, the author seeks to present in easy‐to‐understand diagrams the effect of external loads on the pretensioned bolt in a bolted joint. In most cases, bolted joints are tightened up with little thought for the size of the external loads that may later be imposed upon them. Since external loads always change the preload in the bolt, it is important to know by how much the bolt load changes. Too much preload leaves too little margin for the external or working load; too little preload and the cyclic stresses cause the bolt to fatigue, assuming the bolted joint is subjected to frequent working loads. No two bolts are alike, even under the most rigorous quality control production methods, but with more sophisticated nut and bolt tightening equipment coming onto the market, better results can be achieved. The use of these diagrams will help engineers and designers understand what is happening in the bolted joint.

Details

Aircraft Engineering and Aerospace Technology, vol. 53 no. 7
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 13 June 2016

G. Lampeas and N. Perogamvros

The purpose of this paper is the development and the assessment of detailed and macro-modelling methodology approaches, suitable for the analysis of composite material bolted

1566

Abstract

Purpose

The purpose of this paper is the development and the assessment of detailed and macro-modelling methodology approaches, suitable for the analysis of composite material bolted joints.

Design/methodology/approach

A benchmark single-lap, single-bolt composite joint configuration is investigated, in order to demonstrate the different joint analysis approaches which are applicable in advanced riveted/bolted parts of aeronautical structures. In particular, several joint macro-models, i.e. numerical and analytical ones, as well as a detailed three-dimensional FE solid joint representation, were developed and compared in terms of stiffness prediction, while they were validated using respective experimental results. In addition, the numerical macro-model is implemented in a full scale, multi-bolt fuselage panel in order to demonstrate its capability to efficiently predict the panel’s response under compressive loads.

Findings

Good correlation was observed between the majority of the models’ predictions and the relative experimental data regarding the lap joint configuration, while the simplified numerical macro-model showed some discrepancies due to the contact instabilities, which, however, may be accepted taking into account the remarkable solution time reductions. In the same manner, the FE macro-model illustrates sufficient accuracy in the prediction of the panel’s response, while, simultaneously, it maintains a low CPU time.

Originality/value

The present study is part of Nikolaos Perogamvros’ doctoral thesis, an original research work. There are very limited literature papers which include the development and the assessment of different efficient and detailed composite joint analysis approaches, regarding their accuracy and efficiency in the stiffness prediction of a composite bolted joint configuration, as well as on the prediction of a multi-bolt panel’s response.

Details

International Journal of Structural Integrity, vol. 7 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 26 August 2014

Shaopeng Liu, Yourong Li, Tao Wang and Yi Luo

– The purpose of this paper is to propose a bolt loosening detection approach which integrates piezoelectric ceramics with active sensor technology.

Abstract

Purpose

The purpose of this paper is to propose a bolt loosening detection approach which integrates piezoelectric ceramics with active sensor technology.

Design/methodology/approach

When the ultrasonic wave propagates across the contact surface at the bolted joints, because of the existence of imperfect interface, only part of the ultrasonic wave energy is passed through it. According to the Hertz contact theory, the passed energy depends on the true contact area which is decided by the bolt pretension. Hence, by measuring the received energy with the sensing piezoelectric material, the bolt pretension or bolt loosening can be detected.

Findings

The experiment revealed that the wave energy propagated across the interface is strongly correlated to the torque level. This relationship will be a good indicator to detect the status of bolted joints. The presented method has a potential application for the monitoring of bolt load loss in-site. Moreover, some factors which will affect the propagation of ultrasonic wave across the bolted joints are discussed in this paper.

Originality/value

This paper provides a good criterion to detect bolt load loss.

Details

Sensor Review, vol. 34 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 6 February 2017

Tolga Dursun and Costas Soutis

The purpose of this paper is to investigate the effect of fastener geometry (protruding head and countersunk fastener) and friction coefficient on the stress distributions around…

Abstract

Purpose

The purpose of this paper is to investigate the effect of fastener geometry (protruding head and countersunk fastener) and friction coefficient on the stress distributions around the hole of the double-lap single bolted aluminium alloy joints.

Design/methodology/approach

3D finite element analyses of double-lap bolted 7075-T6 aluminium joints were carried out. An elastic-plastic multi-linear kinematic hardening material behaviour was assumed for the Al alloy. Contact was defined using an augmented-Langrange contact algorithm, including the friction effect. Bolt clamping force and remote axial tensile loading were applied in two load steps and their separate and combined effects on the joint behaviour were investigated for two types of fastener configurations.

Findings

It was observed that bolt clamping reduces the axial tensile stress at the hole edge by introducing a through-thickness compressive stress. This reduction in stress concentration may have a beneficial effect on the fatigue life of the joint. Second, bolt clamping reduces the bearing stress at the fastener hole by creating a frictional force between the joint plates. Results showed that the joint with protruding head fastener shows lower tensile stress concentration, and lower bearing stress, near the bolt hole of the middle plate.

Originality/value

Bolt clamping force reduces both the stress concentration near the hole edge and the bearing stress at the hole by creating a frictional force. Joint with a protruding head fastener may lead to higher load carrying capability and improved fatigue life. Friction coefficient affects the stress levels around the bolt hole.

Details

International Journal of Structural Integrity, vol. 8 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 13 June 2016

Hemant Krishnarao Wagh, Girish R. Desale and Kartikeya Tripathi

The purpose of this paper is to give a brief introduction of helical spring locked washer along with extensive literatures survey on role of helical spring locked washer in bolted

Abstract

Purpose

The purpose of this paper is to give a brief introduction of helical spring locked washer along with extensive literatures survey on role of helical spring locked washer in bolted joint analysis. It is very small component of bolted joint assembly, but it play vital role in holding the assembly components together. Helical shape of it produces spring effect in the assembly which is used for keeping the assembly in tension and that is lock the assembly under dynamic loading due to vibrations to avoid the accident.

Design/methodology/approach

The critical literatures survey identifies role of helical spring locked washer in different areas such as design optimization, mechanism of loosening-resistant components, bolted joint analysis, finite element-based modeling, analysis and simulation. The related literatures show contribution of helical spring washers in evaluation of anti-loosening performance of assemblies as compare to other types of washers.

Findings

It proposed that design optimization of helical spring locked washer is needed as it improves the performance in the form of load-deflection characteristics, load bearing capacity and provides the best locking force for optimize functionality.

Originality/value

The originality or value of this paper is to finding research gaps in literatures by dividing literatures into seven different research areas and concentrating the only on role of helical spring locked washer in bolted joint analysis.

Details

International Journal of Structural Integrity, vol. 7 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 7 December 2023

Mohammed Jazeel, Sam Paul P., Lawrance Gunaraj and Hemalatha G.

Nowadays, in building structures, dampers are connected to the building structure to reduce the damages caused by seismicity in addition to enhancing structural stability, and to…

37

Abstract

Purpose

Nowadays, in building structures, dampers are connected to the building structure to reduce the damages caused by seismicity in addition to enhancing structural stability, and to connect dampers with the structure, joints are used. In this paper, three different configurations of double-lap joints were designed, developed and tested.

Design/methodology/approach

This paper aims to analyze three different categories of double-lap single-bolted joints that are used in connecting dampers with concrete and steel frame structures. These joints were designed and tested using computational, numerical and experimental methods. The studies were conducted to examine the reactions of the joints during loading conditions and to select the best joints for the structures that allow easy maintenance of the dampers and also withstand structural deformation when the damper is active during seismicity. Also, a computational analysis was performed on the designed joints integrated with the M25 concrete beam column junction. In this investigation, experimental study was carried out in addition to numerical and computational methods during cyclic load.

Findings

It was observed from the result that during deformation the double-base multiplate lap joint was suitable for buildings because the deformations on the joint base was negligible when compared with other joints. From the computational analysis, it was revealed that the three double joints while integrated with the beam column junction of M25 grade concrete structure, the damages induced by the double-base multiplate joint was negligible when compared with other two joints used in this study.

Originality/value

To prevent the collapse of the building during seismicity, dampers are used and further connecting the damper with the building structures, joints are used. In this paper, three double-lap joints in different design configuration were studied using computational, numerical and experimental techniques.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 September 2019

Slobodanka Jovasevic, José Correia, Marko Pavlovic, Rita Dantas, Carlos Rebelo, Milan Veljkovic and Abilio M.P. de Jesus

In the last decades, the demand and use of renewable energies have been increasing. The increase in renewable energies, particularly wind energy, leads to the development and…

Abstract

Purpose

In the last decades, the demand and use of renewable energies have been increasing. The increase in renewable energies, particularly wind energy, leads to the development and innovation of powerful wind energy converters as well as increased production requirements. Hence, a higher supporting structure is required to achieve higher wind speed with less turbulence. To date, the onshore wind towers with tubular connections are the most used. The maximum diameter of this type of tower is limited by transportation logistics. The purpose of this paper is to propose an alternative wind turbine lattice structure based on half-pipe steel connections.

Design/methodology/approach

In this study, a new concept of steel hybrid tower has been proposed. The focus of this work is the development of a lattice structure. Therefore, the geometry of the lattice part of the tower is assessed to decrease the number of joints and bolts. The sections used in the lattice structure are constructed in a polygonal shape. The elements are obtained by cold forming and bolted along the length. The members are connected by gusset plates and preloaded bolts. A numerical investigation of joints is carried out using the finite element (FE) software ABAQUS.

Findings

Based on the proposed study, the six “legs” solution with K braces under 45° angle and height/spread ratio of 4/1 and 5/1 provides the most suitable balance between the weight of the supporting structure, number of bolts in joints and reaction forces in the foundations, when compared with four “legs” solution.

Originality/value

In this investigation, the failure modes of elements and joints of an alternative wind turbine lattice structures, as well as the rotation stiffness of the joints, are determined. The FE results show good agreement with the analytical calculation proposed by EC3-1-8 standard.

Details

International Journal of Structural Integrity, vol. 12 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 2000