Search results

1 – 10 of 11
Article
Publication date: 8 January 2020

Abdul-Majid Wazwaz

The purpose of this paper is to introduce two new (3 + 1)-dimensional BoitiLeonMannaPempinelli (BLMP) equations, the first with constant coefficients and the other with…

Abstract

Purpose

The purpose of this paper is to introduce two new (3 + 1)-dimensional BoitiLeonMannaPempinelli (BLMP) equations, the first with constant coefficients and the other with time-dependent coefficients. The author obtains multiple soliton solutions and multiple complex soliton solutions for the two developed models.

Design/methodology/approach

The newly developed models with constant coefficients and with time-dependent coefficients have been handled by using the simplified Hirota’s method. The author also uses the complex Hirota’s criteria for deriving multiple complex soliton solutions.

Findings

The two developed BLMP models exhibit complete integrability for any constant coefficient and any analytic time-dependent coefficients by investigating the compatibility conditions for each developed model.

Research limitations/implications

The paper presents an efficient algorithm for handling integrable equations with constant and analytic time-dependent coefficients.

Practical implications

The paper presents two new integrable equations with a variety of coefficients. The author showed that integrable equations with constant and time-dependent coefficients give real and complex soliton solutions.

Social implications

The paper presents useful algorithms for finding and studying integrable equations with constant and time-dependent coefficients.

Originality/value

The paper presents an original work with a variety of useful findings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Article
Publication date: 6 August 2021

Yasir Khan

Nizhnik–Novikov–Veselov system (NNVS) is a well-known isotropic extension of the Lax (1 + 1) dimensional Korteweg-deVries equation that is also used as a paradigm for an…

Abstract

Purpose

Nizhnik–Novikov–Veselov system (NNVS) is a well-known isotropic extension of the Lax (1 + 1) dimensional Korteweg-deVries equation that is also used as a paradigm for an incompressible fluid. The purpose of this paper is to present a fractal model of the NNVS based on the Hausdorff fractal derivative fundamental concept.

Design/methodology/approach

A two-scale transformation is used to convert the proposed fractal model into regular NNVS. The variational strategy of well-known Chinese scientist Prof. Ji Huan He is used to generate bright and exponential soliton solutions for the proposed fractal system.

Findings

The NNV fractal model and its variational principle are introduced in this paper. Solitons are created with a variety of restriction interactions that must all be applied equally. Finally, the three-dimensional diagrams are displayed using an appropriate range of physical parameters. The results of the solitary solutions demonstrated that the suggested method is very accurate and effective. The proposed methodology is extremely useful and nearly preferable for use in such problems.

Practical implications

The research study of the soliton theory has already played a pioneering role in modern nonlinear science. It is widely used in many natural sciences, including communication, biology, chemistry and mathematics, as well as almost all branches of physics, including nonlinear optics, plasma physics, fluid dynamics, condensed matter physics and field theory, among others. As a result, while constructing possible soliton solutions to a nonlinear NNV model arising from the field of an incompressible fluid is a popular topic, solving nonlinear fluid mechanics problems is significantly more difficult than solving linear ones.

Originality/value

To the best of the authors’ knowledge, for the first time in the literature, this study presents Prof. Ji Huan He's variational algorithm for finding and studying solitary solutions of the fractal NNV model. The reported solutions are novel and present a valuable addition to the literature in soliton theory.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 September 2023

Abdul-Majid Wazwaz, Mansoor Alshehri and Samir A. El-Tantawy

This study aims to explore novel solitary wave solutions of a new (3 + 1)-dimensional nonlocal Boussinesq equation that illustrates nonlinear water dynamics.

Abstract

Purpose

This study aims to explore novel solitary wave solutions of a new (3 + 1)-dimensional nonlocal Boussinesq equation that illustrates nonlinear water dynamics.

Design/methodology/approach

The authors use the Painlevé analysis to study its complete integrability in the Painlevé sense.

Findings

The Painlevé analysis demonstrates the compatibility condition for the model integrability with the addition of new extra terms.

Research limitations/implications

The phase shifts, phase variables and Hirota’s bilinear algorithm are used to furnish multiple soliton solutions.

Practical implications

The authors also furnish a variety of numerous periodic solutions, kink solutions and singular solutions.

Social implications

The work formally furnishes algorithms for investigating several physical systems, including plasma physics, optical communications and oceans and seas, among others.

Originality/value

This paper presents an original work using a newly developed Painlevé integrable model, as well as novel and insightful findings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 May 2021

Sachin Kumar, Rajesh Kumar Gupta and Pinki Kumari

This study aims to find the symmetries and conservation laws of a new Painlevé integrable Broer-Kaup (BK) system with variable coefficients. This system is an extension of…

Abstract

Purpose

This study aims to find the symmetries and conservation laws of a new Painlevé integrable Broer-Kaup (BK) system with variable coefficients. This system is an extension of dispersive long wave equations. As the system is generalized and new, it is essential to explore some of its possible aspects such as conservation laws, symmetries, Painleve integrability, etc.

Design/methodology/approach

This paper opted for an exploratory study of a new Painleve integrable BK system with variable coefficients. Some analytic solutions are obtained by Lie classical method. Then the conservation laws are derived by multiplier method.

Findings

This paper presents a complete set of point symmetries without any restrictions on choices of coefficients, which subsequently yield analytic solutions of the series and solitary waves. Next, the authors derive every admitted non-trivial conservation law that emerges from multipliers.

Research limitations/implications

The authors have found that the considered system is likely to be integrable. So some other aspects such as Lax pair integrability, solitonic behavior and Backlund transformation can be analyzed to check the complete integrability further.

Practical implications

The authors develop a time-dependent Painleve integrable long water wave system. The model represents more specific data than the constant system. The authors presented analytic solutions and conservation laws.

Originality/value

The new time-dependent Painleve integrable long water wave system features some interesting results on symmetries and conservation laws.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Article
Publication date: 28 March 2023

Abdul-Majid Wazwaz, Haifa A. Alyousef and Samir El-Tantawy

This study aims to propose an extended (3 + 1)-dimensional integrable Kadomtsev–Petviashvili equation characterized by adding three new linear terms.

Abstract

Purpose

This study aims to propose an extended (3 + 1)-dimensional integrable Kadomtsev–Petviashvili equation characterized by adding three new linear terms.

Design/methodology/approach

This study formally uses Painlevé test to confirm the integrability of the new system.

Findings

The Painlevé analysis shows that the compatibility condition for integrability does not die away by adding three new linear terms with distinct coefficients.

Research limitations/implications

This study uses the Hirota's bilinear method to explore multiple soliton solutions where phase shifts and phase variable are explored.

Practical implications

This study also furnishes a class of lump solutions (LSs), which are rationally localized in all directions in space, using distinct values of the parameters via using the positive quadratic function method.

Social implications

This study also shows the power of the simplified Hirota’s method in handling integrable equations.

Originality/value

This paper introduces an original work with newly developed Painlevé integrable model and shows new useful findings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 July 2019

Hui Wang, Shou-Fu Tian and Yi Chen

The purpose of this paper is to study the breather waves, rogue waves and solitary waves of an extended (3 + 1)-dimensional Kadomtsev–Petviashvili (KP) equation, which can be used…

Abstract

Purpose

The purpose of this paper is to study the breather waves, rogue waves and solitary waves of an extended (3 + 1)-dimensional Kadomtsev–Petviashvili (KP) equation, which can be used to depict many nonlinear phenomena in fluid dynamics and plasma physics.

Design/methodology/approach

The authors apply the Bell’s polynomial approach, the homoclinic test technique and Hirota’s bilinear method to find the breather waves, rogue waves and solitary waves of the extended (3 + 1)-dimensional KP equation.

Findings

The results imply that the extended (3 + 1)-dimensional KP equation has breather wave, rogue wave and solitary wave solutions. Meanwhile, the authors provide the graphical analysis of such solutions to better understand their dynamical behavior.

Originality/value

These results may help us to further study the local structure and the interaction of solutions in KP-type equations. The authors hope that the results provided in this work can help enrich the dynamic behavior of such equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 August 2019

Jin-Jin Mao, Shou-Fu Tian, Xing-Jie Yan and Tian-Tian Zhang

The purpose of this study is to examine the lump solutions of the (3 + 1)-dimensional nonlinear evolution equations by considering a (3 + 1)-dimensional generalized…

Abstract

Purpose

The purpose of this study is to examine the lump solutions of the (3 + 1)-dimensional nonlinear evolution equations by considering a (3 + 1)-dimensional generalized Kadomtsev–Petviashvili (gKP) equation and a (3 + 1)-dimensional variable-coefficient generalized B-type Kadomtsev–Petviashvili (vcgBKP) equation as examples.

Design/methodology/approach

Based on Hirota’s bilinear theory, a direct method is used to examine the lump solutions of these two equations.

Findings

The complete non-elastic interaction solutions between a lump and a stripe are also discussed for the equations, which show that the lump solitons are swallowed by the stripe solitons.

Originality/value

The dynamics of these solutions are analyzed to enrich the diversity of the dynamics of high-dimensional KP-type nonlinear wave equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 August 2023

Kang-Jia Wang

The purpose of this paper is to study the new (3 + 1)-dimensional integrable fourth-order nonlinear equation which is used to model the shallow water waves.

Abstract

Purpose

The purpose of this paper is to study the new (3 + 1)-dimensional integrable fourth-order nonlinear equation which is used to model the shallow water waves.

Design/methodology/approach

By means of the Cole–Hopf transform, the bilinear form of the studied equation is extracted. Then the ansatz function method combined with the symbolic computation is implemented to construct the breather, multiwave and the interaction wave solutions. In addition, the subequation method tis also used to search for the diverse travelling wave solutions.

Findings

The breather, multiwave and the interaction wave solutions and other wave solutions like the singular periodic wave structure and dark wave structure are obtained. To the author’s knowledge, the solutions obtained are all new and have never been reported before.

Originality/value

The solutions obtained in this work have never appeared in other literature and can be regarded as an extension of the solutions for the new (3 + 1)-dimensional integrable fourth-order nonlinear equation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 11