Search results

1 – 10 of over 1000
Click here to view access options
Article
Publication date: 14 January 2022

Bekinew Kitaw Dejene, Terefe Belachew Fenta and Chirato Godana Korra

The potential for burn injuries arises from contact with a hot surface, flame, hot liquid and steam hazards. The purpose of this study is to develop the flame retardant…

Abstract

Purpose

The potential for burn injuries arises from contact with a hot surface, flame, hot liquid and steam hazards. The purpose of this study is to develop the flame retardant acrylic and cotton blend textile finished with Enset Ventricosum pseudostem sap (EPS).

Design/methodology/approach

The two fabric was produced from (30% acrylic with 70% cotton) and (35% acrylic with 65% cotton) blend. The extracted sap was made alkaline and applied on two mordanted blend fabrics. The effect of blend ratio, the concentration of EPS and treatment time on flammability, Flame retardant properties of both the control and the treated fabrics were analyzed in terms of vertical flammability based on the design of the experiment software using central composite design. The air permeability and tensile strength of treated and controlled fabric were measured.

Findings

The blended fabrics at different blended ratios were flame retardant with an optimized result of burning time 2.902 min and 2.775 min and char length 6.442 cm and 7.332 cm in the warp and weft direction, respectively, at a concentration of 520 ml and time 33.588 min. There was a slight significant change in mechanical strengths and air permeability. The thermal degradation and the pyrolysis of the fabric samples were studied using thermogravimetric analysis and the chemical composition by Fourier-transform infrared spectroscopy abbreviated as Fourier-transform infrared spectroscopy. The wash durability of the treated fabric at different blend ratios was carried out for the optimized sample and the test result shows that the flame retardancy property is durable up to 15 washes.

Originality/value

Development of flame retardant cotton and acrylic blend textile fabric finish with ESP was studied; this work provides application of EPS for flame resistance which is optimized statically and successfully applied for a flame retardant property on cotton-acrylic blend fabric.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Click here to view access options
Article
Publication date: 12 March 2018

Wasif Latif, Abdul Basit, Zulfiqar Ali and Sajjad Ahmad Baig

The purpose of this paper is to study the 100 percent pure cotton and 50:50 cotton and regenerated fibers (tencel, modal, bamboo, viscose) blends. The blends of…

Abstract

Purpose

The purpose of this paper is to study the 100 percent pure cotton and 50:50 cotton and regenerated fibers (tencel, modal, bamboo, viscose) blends. The blends of regenerated fibers with cotton are studied so as to replace 100 percent cotton fabrics with the cotton blends as cotton cannot fulfill the demand of clothing due to the increasing population.

Design/methodology/approach

In order to conduct this study, cotton, as natural cellulose fiber, was used. Regenerated fibers include viscose, tencel, modal and bamboo. Five yarn samples of Ne 30/1 of 100 percent cotton and blends (50:50) of cotton with tencel, modal, bamboo and viscose fibers were produced. The blending was done in the Blow-room, and yarn samples were produced by employing the ring spinning technique. Plain woven fabrics samples with Ends (76) and Picks (68) per inch of 120 gsm were prepared. The fabric samples were tested for mechanical (warp and weft tensile and tear strengths) and comfort properties (air permeability, moisture management and thermal resistance).

Findings

Cotton:tencel fabric has the excellent mechanical (tensile and tear strength) as well as comfort properties (air permeability, moisture management and thermal resistance). It means that the most suitable blend that cotton can make with the regenerated fibers is the tencel. Therefore, to have more comfortable fabrics, the fabrics which are being made by 100 percent cotton can be replaced with the cotton:tencel.

Originality/value

To the authors’ information, no study has been reported in which all the regenerated fibers blended with cotton were studied. Hence, the aim of this work is to study the mechanical and comfort properties of the regenerated fibers (modal, tencel, viscose and bamboo) blended with cotton. The blends of cotton with regenerated fibers might replace 100 percent cotton in clothing applications as cotton cannot fulfill the increasing demanding of clothing.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Click here to view access options
Article
Publication date: 12 January 2018

M. Janarthanan and M. Senthil Kumar

Medical textiles is a vibrant emerging field in the area of technical textiles and its category is based on its performance and biofunctional properties for hygienic and…

Abstract

Purpose

Medical textiles is a vibrant emerging field in the area of technical textiles and its category is based on its performance and biofunctional properties for hygienic and health care products. Biodegradable fabrics are widely used for medical textiles in recent years. Seaweeds provide a wide range of therapeutic possibilities for human beings both internally and externally due to the presence of bioactive compounds. The paper aims to discuss these issues.

Design/methodology/approach

This present study investigates the development of bioactive gauze fabric from Chaetomorpha linum seaweed/cotton blended fibres and also analysed the characteristics of Chaetomorpha linum seaweed/cotton blended gauze fabric and 100 per cent cotton gauze fabric. The effect of fibres on physical properties of fabric such as tensile strength, air permeability, wickability, water drop test and colour fastness properties were analysed. The antibacterial properties and antioxidant activity were assessed by DPPH radical scavenging, AATCC 100 and EN ISO 20645 test methods.

Findings

The experimental results indicate that the maximum antioxidant activity of 103.28±1.23 per cent inhibition was achieved at minimum concentration (500 µg/ml) of the blended fabric extract, and maximum antibacterial reduction of 95 per cent and zone of inhibition of about 26 mm were achieved in a blended fabric. The tensile strength, percentage of elongation and air permeability were more or less the same in both gauze fabrics. It is also found that Chaetomorpha linum seaweed/cotton blended gauze fabric exhibit better wickability and water absorbency properties than 100 per cent cotton gauze fabric. The colour fastness properties to washing and rubbing showed excellent results in the blended gauze fabric, and it is used for making wound dressing materials.

Originality/value

This bioactive gauze fabric was used for non-implantable materials such as wound healing, face mask, surgical gowns and hygienic textiles in recent years.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Click here to view access options
Article
Publication date: 1 August 2016

Govindan Karthikeyan, Govind Nalankilli, O L Shanmugasundaram and Chidambaram Prakash

– The purpose of this paper is to present the thermal comfort properties of single jersey knitted fabric structures made from bamboo, tencel and bamboo-tencel blended yarns.

Abstract

Purpose

The purpose of this paper is to present the thermal comfort properties of single jersey knitted fabric structures made from bamboo, tencel and bamboo-tencel blended yarns.

Design/methodology/approach

Bamboo, tencel fibre and blends of the two fibres were spun into yarns of identical linear density (30s Ne). Each of the blended yarns so produced was converted to single jersey knitted fabrics with loose, medium and tight structures.

Findings

An increase in tencel fibre in the fabric had led to a reduction in fabric thickness and GSM. Air permeability and water-vapour permeability also increased with increase in tencel fibre content. The anticipated increase in air permeability and relative water vapour permeability with increase in stitch length was observed. The thermal conductivity of the fabrics was generally found to increase with increase in the proportion of bamboo.

Research limitations/implications

It is clear from the foregoing that, although a considerable amount of work has been done on bamboo blends and their properties, still there are many gaps existing in the literature, in particular, on thermal comfort, moisture management and spreading characteristics. Thus the manuscript addresses these issues and provides valuable information on the comfort characteristics of the blended fabrics for the first time. In the evolution of this manuscript, it became apparent that a considerable amount of work was needed to fill up the gaps existing in the literature and hence this work which deals with an investigation of the blend yarn properties and comfort properties of knitted fabrics was taken up.

Originality/value

This research work is focused on the thermal comfort parameters of knitted fabrics made from 100 per cent tencel yarn, 100 per cent bamboo yarn and tencel/bamboo blended yarns of different blend ratios.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Click here to view access options
Article
Publication date: 18 November 2019

Xinjin Liu, Xuzhong Su, Juan Song and Yafang Zhang

Due to the excellent functionality of graphene, the research on fiber modification by graphene has been receiving more and more attentions recently, and many research…

Abstract

Purpose

Due to the excellent functionality of graphene, the research on fiber modification by graphene has been receiving more and more attentions recently, and many research findings have been conducted. However, the purpose of this paper is to focus on the fiber modification method and corresponding modified fiber properties, but the research on processing of the modified fiber, especially the textile process, is little. Therefore, in the paper, the properties of one kind of textile GN fiber and the spinning method of the GN fiber blend yarn and the functionalities of corresponding fabric are studied.

Design/methodology/approach

In the paper, the properties of nylon fiber modified by graphene (GN) were studied first. Then, according to the tested results, one new blending process of the GN fiber and cotton fiber was given, and corresponding properties of the blend yarns were tested and analyzed. Finally, the knitted fabrics were produced using the spun blend yarns, and the antibacterial property, electromagnetic shielding property, anti-ultraviolet performance, anti-static performance and conventional mechanical, and appearance thermal-wet comfort properties were tested and comparatively analyzed.

Findings

The tested results showed that the functionality of all fabrics was effective due to the addition of the graphene in the fiber, especially the antibacterial property. With the increasing of the GN fiber in the blend yarns, the functionality of all fabrics was also increased first and then achieved stability.

Originality/value

One new blending process of the GN fiber and cotton fiber was given. In the spinning, the combed cotton sliver was produced first, and then was torn into small parts of combed cotton sliver fiber by hand. Then, the treated GN fibers and cotton fibers were mixed for the first time, and corresponding GN/C carding sliver was produced. In this blend processing, the mixed cotton fiber was used to improve the sliver processing of the GN fiber. Then, in the drawing process, the required number of GN/C carding sliver and combed cotton sliver were fed simultaneously, and GN fibers and cotton fibers were mixed for the second time, and corresponding four kinds of GN/JC blend yarns were produced. In this blend processing, the mixed cotton fiber was used to regulate the blending ratio.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Click here to view access options
Article
Publication date: 2 September 2019

Ashitosh B. Pawar, Kaustubh C. Patankar, Pallavi Madiwale and Ravindra Adivarekar

The purpose of this paper is to highlight the one bath dyeing method for polyester/wool (PES/Wo) blend fabric with two different semi-synthetic azo dyes developed by…

Abstract

Purpose

The purpose of this paper is to highlight the one bath dyeing method for polyester/wool (PES/Wo) blend fabric with two different semi-synthetic azo dyes developed by chemically modifying the outer skin of Allium cepa.

Design/Methodology/Approach

Chemical modification is the most heartening way to impart improved properties to natural sources. Two different primary amines were coupled with the Allium cepa skin extract by a diazo coupling reaction. Synthesised dyes were characterized for their percentage yield, solubility tests, melting point, particle size analysis as well as FTIR spectroscopy and UV-Visible analysis. One bath dyeing methodology was used for application of synthesized dyes on PES/Wo blend fabric. Dyeing was performed at boil without any additional auxiliary and further percentage dye exhaustion was evaluated.

Findings

Dyeing yielded solid shade on PES/Wo blend fabric with satisfactory levelness in dyeing. The efficacy of synthesized dyes for dyeing of PES/Wo fabric was studied by wash, rub, light and sublimation fastness properties, which are in good agreement with commercial requirements. The antimicrobial activity of the synthesized dyes shows excellent activity in dye powder form (AATCC 147 test method) as well as on dyed fabrics (AATCC 100 test method).

Originality/Value

Present research work is a first successful attempt to dye PES/Wo blend fabric with semi-synthetic azo dyes in single bath at boil. Such approach facilitates minimum consumption of energy, cost and time.

Details

Pigment & Resin Technology, vol. 48 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Click here to view access options
Article
Publication date: 1 March 1997

Patricia E. Horridge and Samina Khan

This study compared physical characteristics in four fabrics before and after a wear trial. The constructed fabrics were: 100 per cent pima cotton, 90–10 per cent pima…

Abstract

This study compared physical characteristics in four fabrics before and after a wear trial. The constructed fabrics were: 100 per cent pima cotton, 90–10 per cent pima cotton/wool, 80–20 per cent pima cotton/wool, and 70–30 per cent pima cotton/wool. The physical properties of breaking strength, stiffness, tear resistance, pilling resistance, and wrinkle recovery were compared between worn and unworn fabrics. Wear trial participants (n=20) were asked to assess fabric comfort and performance satisfaction during wear. Results of physical testing found significant differences among blend levels and before and after wearing and care treatment levels. Tear resistance, breaking strength, stiffness, and wrinkle recovery were affected by fibre content and care level. Contrary to the authors' hypothesis, consumer satisfaction was also affected by fibre content of the fabrics.

Details

Journal of Fashion Marketing and Management: An International Journal, vol. 1 no. 4
Type: Research Article
ISSN: 1361-2026

Keywords

Click here to view access options
Article
Publication date: 1 February 2004

R. Chollakup, A. Sinoimeri, F. Philippe, L. Schacher and D. Adolphe

Currently, textile industrialists have to consider the sensory aspect in their design and manufacturing specifications. To describe the sensory quality of products…

Downloads
1028

Abstract

Currently, textile industrialists have to consider the sensory aspect in their design and manufacturing specifications. To describe the sensory quality of products, sensory evaluation does exist and is widely used in the food and cosmetics areas. These methodologies have been successfully transposed to tactile evaluation of textile fabrics for different textile materials: plain weave fabrics with different post‐treatments and non‐woven are used for medical gowns and drapes. In our study, we have asked our trained panel composed of nine assessors to score a list of already defined sensory attributes for different knitted fabrics made of silk/cotton blends. The spinning parameters which have been changed are the type of silk fibre (three types), blending techniques – intimate and draw frame blending – and the silk content. All these parameters can more or less influence the tactile perception of the final knitted fabric. In this paper, the results of our analysis are presented and discussed in order to answer questions such as: “Are these two fabrics different?”, “What kind of difference is there?” or “What are the sensory characteristics of these fabrics?”. The concrete steps of the evaluation will be presented and specifically the training and performance analysis of the panellists who were obliged to adapt their evaluation procedures to small knitted samples. The protocols used to carry out fabrics description and comparisons when all assessors cannot evaluate all the products under study will also be detailed.

Details

International Journal of Clothing Science and Technology, vol. 16 no. 1/2
Type: Research Article
ISSN: 0955-6222

Keywords

Click here to view access options
Article
Publication date: 27 January 2020

Kashif Iqbal, Amjed Javid, Abdur Rehman, Aisha Rehman, Munir Ashraf and Hafiz Affan Abid

This study aims to deal with the dyeing of nylon-/cotton-blended fabric in one bath using direct and acid dyes.

Abstract

Purpose

This study aims to deal with the dyeing of nylon-/cotton-blended fabric in one bath using direct and acid dyes.

Design/methodology/approach

The cellulose in cotton/nylon-blended fabric was chemically modified using 3-chloro-2-hydroxypropyl tri-methyl ammonium chloride (CHPTAC) as cationizing agent to impart positive charge on the cellulose. The modified and unmodified blended fabrics were dyed in a single bath with direct and acid dyes under various concentrations of 0.5, 1, 2, 4 and 6 per cent on the weight of fabric by exhaust method. The dyeing of modified and unmodified fabrics was characterized through the properties such as K/S and colorfastness to washing, rubbing and light.

Findings

The modified fabric exhibited higher color yield, comparable rubbing fastness and good washing fastness.

Originality/value

The dye uptake was maximum in a single-bath dyeing process of nylon-/cotton-blended fabrics without electrolyte addition, which minimizes the impact of dyes on environment.

Details

Pigment & Resin Technology, vol. 49 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Click here to view access options
Article
Publication date: 1 August 2009

A. Das, P. Chakroborty and P. Kumar

An approach to measurement of fabric hairiness based on image processing is developed and demonstrated in the present study. The total system consists of two components…

Abstract

An approach to measurement of fabric hairiness based on image processing is developed and demonstrated in the present study. The total system consists of two components: i) a mechanical setup for image grabbing; and ii) analysis software for measurement of hairiness values based on suitable algorithms using MATLAB software. The software is able to detect the best estimated edge of fabrics and subsequently the fabric hairiness values are calculated precisely. A series of polyester-viscose blended fabrics with varying blend ratios are selected for the study. The fabrics were selected in such a way that all other parameters were the same except blend ratios. The fabrics were subject to different abrasion cycles and their hairiness values were then measured. With an increase in abrasion cycling, the average length of hairs increases and a similar trend is observed for all blended fabrics except the 100% viscose fabric. With an increase in viscose content in polyester-viscose blended fabrics, the hairiness value increases generally.

Details

Research Journal of Textile and Apparel, vol. 13 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of over 1000