Search results

1 – 10 of over 2000
Article
Publication date: 14 January 2022

Bekinew Kitaw Dejene, Terefe Belachew Fenta and Chirato Godana Korra

The potential for burn injuries arises from contact with a hot surface, flame, hot liquid and steam hazards. The purpose of this study is to develop the flame retardant acrylic…

Abstract

Purpose

The potential for burn injuries arises from contact with a hot surface, flame, hot liquid and steam hazards. The purpose of this study is to develop the flame retardant acrylic and cotton blend textile finished with Enset Ventricosum pseudostem sap (EPS).

Design/methodology/approach

The two fabric was produced from (30% acrylic with 70% cotton) and (35% acrylic with 65% cotton) blend. The extracted sap was made alkaline and applied on two mordanted blend fabrics. The effect of blend ratio, the concentration of EPS and treatment time on flammability, Flame retardant properties of both the control and the treated fabrics were analyzed in terms of vertical flammability based on the design of the experiment software using central composite design. The air permeability and tensile strength of treated and controlled fabric were measured.

Findings

The blended fabrics at different blended ratios were flame retardant with an optimized result of burning time 2.902 min and 2.775 min and char length 6.442 cm and 7.332 cm in the warp and weft direction, respectively, at a concentration of 520 ml and time 33.588 min. There was a slight significant change in mechanical strengths and air permeability. The thermal degradation and the pyrolysis of the fabric samples were studied using thermogravimetric analysis and the chemical composition by Fourier-transform infrared spectroscopy abbreviated as Fourier-transform infrared spectroscopy. The wash durability of the treated fabric at different blend ratios was carried out for the optimized sample and the test result shows that the flame retardancy property is durable up to 15 washes.

Originality/value

Development of flame retardant cotton and acrylic blend textile fabric finish with ESP was studied; this work provides application of EPS for flame resistance which is optimized statically and successfully applied for a flame retardant property on cotton-acrylic blend fabric.

Details

Research Journal of Textile and Apparel, vol. 27 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 12 March 2018

Wasif Latif, Abdul Basit, Zulfiqar Ali and Sajjad Ahmad Baig

The purpose of this paper is to study the 100 percent pure cotton and 50:50 cotton and regenerated fibers (tencel, modal, bamboo, viscose) blends. The blends of regenerated fibers…

Abstract

Purpose

The purpose of this paper is to study the 100 percent pure cotton and 50:50 cotton and regenerated fibers (tencel, modal, bamboo, viscose) blends. The blends of regenerated fibers with cotton are studied so as to replace 100 percent cotton fabrics with the cotton blends as cotton cannot fulfill the demand of clothing due to the increasing population.

Design/methodology/approach

In order to conduct this study, cotton, as natural cellulose fiber, was used. Regenerated fibers include viscose, tencel, modal and bamboo. Five yarn samples of Ne 30/1 of 100 percent cotton and blends (50:50) of cotton with tencel, modal, bamboo and viscose fibers were produced. The blending was done in the Blow-room, and yarn samples were produced by employing the ring spinning technique. Plain woven fabrics samples with Ends (76) and Picks (68) per inch of 120 gsm were prepared. The fabric samples were tested for mechanical (warp and weft tensile and tear strengths) and comfort properties (air permeability, moisture management and thermal resistance).

Findings

Cotton:tencel fabric has the excellent mechanical (tensile and tear strength) as well as comfort properties (air permeability, moisture management and thermal resistance). It means that the most suitable blend that cotton can make with the regenerated fibers is the tencel. Therefore, to have more comfortable fabrics, the fabrics which are being made by 100 percent cotton can be replaced with the cotton:tencel.

Originality/value

To the authors’ information, no study has been reported in which all the regenerated fibers blended with cotton were studied. Hence, the aim of this work is to study the mechanical and comfort properties of the regenerated fibers (modal, tencel, viscose and bamboo) blended with cotton. The blends of cotton with regenerated fibers might replace 100 percent cotton in clothing applications as cotton cannot fulfill the increasing demanding of clothing.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 12 January 2018

M. Janarthanan and M. Senthil Kumar

Medical textiles is a vibrant emerging field in the area of technical textiles and its category is based on its performance and biofunctional properties for hygienic and health…

Abstract

Purpose

Medical textiles is a vibrant emerging field in the area of technical textiles and its category is based on its performance and biofunctional properties for hygienic and health care products. Biodegradable fabrics are widely used for medical textiles in recent years. Seaweeds provide a wide range of therapeutic possibilities for human beings both internally and externally due to the presence of bioactive compounds. The paper aims to discuss these issues.

Design/methodology/approach

This present study investigates the development of bioactive gauze fabric from Chaetomorpha linum seaweed/cotton blended fibres and also analysed the characteristics of Chaetomorpha linum seaweed/cotton blended gauze fabric and 100 per cent cotton gauze fabric. The effect of fibres on physical properties of fabric such as tensile strength, air permeability, wickability, water drop test and colour fastness properties were analysed. The antibacterial properties and antioxidant activity were assessed by DPPH radical scavenging, AATCC 100 and EN ISO 20645 test methods.

Findings

The experimental results indicate that the maximum antioxidant activity of 103.28±1.23 per cent inhibition was achieved at minimum concentration (500 µg/ml) of the blended fabric extract, and maximum antibacterial reduction of 95 per cent and zone of inhibition of about 26 mm were achieved in a blended fabric. The tensile strength, percentage of elongation and air permeability were more or less the same in both gauze fabrics. It is also found that Chaetomorpha linum seaweed/cotton blended gauze fabric exhibit better wickability and water absorbency properties than 100 per cent cotton gauze fabric. The colour fastness properties to washing and rubbing showed excellent results in the blended gauze fabric, and it is used for making wound dressing materials.

Originality/value

This bioactive gauze fabric was used for non-implantable materials such as wound healing, face mask, surgical gowns and hygienic textiles in recent years.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 August 2016

Govindan Karthikeyan, Govind Nalankilli, O L Shanmugasundaram and Chidambaram Prakash

– The purpose of this paper is to present the thermal comfort properties of single jersey knitted fabric structures made from bamboo, tencel and bamboo-tencel blended yarns.

Abstract

Purpose

The purpose of this paper is to present the thermal comfort properties of single jersey knitted fabric structures made from bamboo, tencel and bamboo-tencel blended yarns.

Design/methodology/approach

Bamboo, tencel fibre and blends of the two fibres were spun into yarns of identical linear density (30s Ne). Each of the blended yarns so produced was converted to single jersey knitted fabrics with loose, medium and tight structures.

Findings

An increase in tencel fibre in the fabric had led to a reduction in fabric thickness and GSM. Air permeability and water-vapour permeability also increased with increase in tencel fibre content. The anticipated increase in air permeability and relative water vapour permeability with increase in stitch length was observed. The thermal conductivity of the fabrics was generally found to increase with increase in the proportion of bamboo.

Research limitations/implications

It is clear from the foregoing that, although a considerable amount of work has been done on bamboo blends and their properties, still there are many gaps existing in the literature, in particular, on thermal comfort, moisture management and spreading characteristics. Thus the manuscript addresses these issues and provides valuable information on the comfort characteristics of the blended fabrics for the first time. In the evolution of this manuscript, it became apparent that a considerable amount of work was needed to fill up the gaps existing in the literature and hence this work which deals with an investigation of the blend yarn properties and comfort properties of knitted fabrics was taken up.

Originality/value

This research work is focused on the thermal comfort parameters of knitted fabrics made from 100 per cent tencel yarn, 100 per cent bamboo yarn and tencel/bamboo blended yarns of different blend ratios.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 18 November 2019

Xinjin Liu, Xuzhong Su, Juan Song and Yafang Zhang

Due to the excellent functionality of graphene, the research on fiber modification by graphene has been receiving more and more attentions recently, and many research findings…

Abstract

Purpose

Due to the excellent functionality of graphene, the research on fiber modification by graphene has been receiving more and more attentions recently, and many research findings have been conducted. However, the purpose of this paper is to focus on the fiber modification method and corresponding modified fiber properties, but the research on processing of the modified fiber, especially the textile process, is little. Therefore, in the paper, the properties of one kind of textile GN fiber and the spinning method of the GN fiber blend yarn and the functionalities of corresponding fabric are studied.

Design/methodology/approach

In the paper, the properties of nylon fiber modified by graphene (GN) were studied first. Then, according to the tested results, one new blending process of the GN fiber and cotton fiber was given, and corresponding properties of the blend yarns were tested and analyzed. Finally, the knitted fabrics were produced using the spun blend yarns, and the antibacterial property, electromagnetic shielding property, anti-ultraviolet performance, anti-static performance and conventional mechanical, and appearance thermal-wet comfort properties were tested and comparatively analyzed.

Findings

The tested results showed that the functionality of all fabrics was effective due to the addition of the graphene in the fiber, especially the antibacterial property. With the increasing of the GN fiber in the blend yarns, the functionality of all fabrics was also increased first and then achieved stability.

Originality/value

One new blending process of the GN fiber and cotton fiber was given. In the spinning, the combed cotton sliver was produced first, and then was torn into small parts of combed cotton sliver fiber by hand. Then, the treated GN fibers and cotton fibers were mixed for the first time, and corresponding GN/C carding sliver was produced. In this blend processing, the mixed cotton fiber was used to improve the sliver processing of the GN fiber. Then, in the drawing process, the required number of GN/C carding sliver and combed cotton sliver were fed simultaneously, and GN fibers and cotton fibers were mixed for the second time, and corresponding four kinds of GN/JC blend yarns were produced. In this blend processing, the mixed cotton fiber was used to regulate the blending ratio.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 March 2022

Geetha Margret Soundri, Kavitha S. and Senthil Kumar B.

The essential properties of active sports fabrics are moisture management, quick-drying, body heat management and thermal regulations. Fibre type, blending nature, yarn and fabric

Abstract

Purpose

The essential properties of active sports fabrics are moisture management, quick-drying, body heat management and thermal regulations. Fibre type, blending nature, yarn and fabric structure and the finishing treatment are the key parameters that influenced the performance of the clothing meant for sportswear. This study aims to investigate the effect of fibre blending and structural tightness factors on bi-layer sport fabric's dimensional, moisture management and thermal properties.

Design/methodology/approach

In this study, 12 different bi-layer inter-lock fabrics were produced. Polyester filament (120 Denier) yarn was fed to form the backside of the fabric, and the face side was varied with cotton, modal, wool and soya spun yarns of 30sNe. Three different types of structural tightness factors were considered, such as low, medium and high were taken for sample development. The assessment towards dimensional, moisture management and thermal properties was carried out on all the samples.

Findings

The polyester-modal blend with a high tightness factor has shown maximum overall moisture management capability (OMMC) values of 0.73 and air permeability of 205.3 cm3/cm2/s. The same sample has shown comparatively higher thermal conductivity of 61.72 × 10–3 W m-1 °C-1(Under compression state) and 58.45 × 10–3 W m-1 °C-1 (under recovery state). In the case of surface roughness is concerned, polyester-modal blends have shown the lowest surface roughness, surface roughness amplitude and surface friction co-efficient. Among the selected fibre combinations, the overall comfort level of polyester-modal bi-layer knitted structure with a higher tightness factor is appreciable. Polyester-modal is more suitable for active sportswear among the four fiber blend combinations.

Research limitations/implications

The outcome of this study will help to gain a better understanding of fibre blends, structural tightness factor and other process specifications for the development of bi-layer fabric for active sportswear applications. The dynamic functional testing methods (Moisture management and Thermal properties) were carried out to simulate the actual wearing environment of the sports clothing. This study will create a new scope of research opportunities in the field of bi-layer sports textiles.

Originality/value

This study was conducted to explore the influence of fibre blend and structural tightness factor on the comfort level of sportswear and to find the suitable fibre blend for active sportswear clothing.

Details

Research Journal of Textile and Apparel, vol. 27 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 11 July 2023

Amal Mohamed El-Moursy, Zeinab Mohmed Abdel Mageid, Manar Yahia Ismail Abd El-Aziz, Nour Asser and Osama Hakeim

Wearing clothes requires specifications for feeling comfortable, derived from the fibres, fabrics and finishing properties. This study aims to deal with the effect of economic…

Abstract

Purpose

Wearing clothes requires specifications for feeling comfortable, derived from the fibres, fabrics and finishing properties. This study aims to deal with the effect of economic blends containing hollow fibres, bamboo and cotton/polyester waste on the mechanical properties of the produced fabrics and the appropriate end use.

Design/methodology/approach

This research included two blends: one consisted of cotton/polyester wastes blended with bamboo and the other to which Chorisia fibres were added. Two weft counts 10,6/1 Ne were made from each blend, which were used to produce four fabric samples (S1 Chorisia-free and S2 with Chorisia); additionally, another two samples were dyed that contain Chorisia (S3) from each count. The six samples were tested by Kawabata Evaluation System (KES).

Findings

The samples gave a good total hand value (THV) for use as men's winter suits, where the thicker count 6/1, with and without Chorisia had better properties, also both counts 6, 10/1 with dye. The hollow fibres affected the fabrics’ properties, including thickness, shear, bending, thermal conductivity and weight. Both blends had a positive effect on THV.

Research limitations/implications

Cotton/polyester waste, Chorisia and bamboo fibres were tested, and 2% Remazol Yellow GNL dye was used.

Practical implications

The ratio of blending, weft counts and dye affected the fabric’s properties, with consequences for the use of the Kawabata system and its applications.

Social implications

The fabrics used in this research may be considered to be economical and have good THV.

Originality/value

The study proved the usefulness of fabrics made of two blends. The Chorisia component may be seen as a good alternative to cotton fibres to reduce the cost of producing high-consumption winter suit fabrics.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 2 September 2019

Ashitosh B. Pawar, Kaustubh C. Patankar, Pallavi Madiwale and Ravindra Adivarekar

The purpose of this paper is to highlight the one bath dyeing method for polyester/wool (PES/Wo) blend fabric with two different semi-synthetic azo dyes developed by chemically…

Abstract

Purpose

The purpose of this paper is to highlight the one bath dyeing method for polyester/wool (PES/Wo) blend fabric with two different semi-synthetic azo dyes developed by chemically modifying the outer skin of Allium cepa.

Design/Methodology/Approach

Chemical modification is the most heartening way to impart improved properties to natural sources. Two different primary amines were coupled with the Allium cepa skin extract by a diazo coupling reaction. Synthesised dyes were characterized for their percentage yield, solubility tests, melting point, particle size analysis as well as FTIR spectroscopy and UV-Visible analysis. One bath dyeing methodology was used for application of synthesized dyes on PES/Wo blend fabric. Dyeing was performed at boil without any additional auxiliary and further percentage dye exhaustion was evaluated.

Findings

Dyeing yielded solid shade on PES/Wo blend fabric with satisfactory levelness in dyeing. The efficacy of synthesized dyes for dyeing of PES/Wo fabric was studied by wash, rub, light and sublimation fastness properties, which are in good agreement with commercial requirements. The antimicrobial activity of the synthesized dyes shows excellent activity in dye powder form (AATCC 147 test method) as well as on dyed fabrics (AATCC 100 test method).

Originality/Value

Present research work is a first successful attempt to dye PES/Wo blend fabric with semi-synthetic azo dyes in single bath at boil. Such approach facilitates minimum consumption of energy, cost and time.

Details

Pigment & Resin Technology, vol. 48 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 March 1997

Patricia E. Horridge and Samina Khan

This study compared physical characteristics in four fabrics before and after a wear trial. The constructed fabrics were: 100 per cent pima cotton, 90–10 per cent pima…

Abstract

This study compared physical characteristics in four fabrics before and after a wear trial. The constructed fabrics were: 100 per cent pima cotton, 90–10 per cent pima cotton/wool, 80–20 per cent pima cotton/wool, and 70–30 per cent pima cotton/wool. The physical properties of breaking strength, stiffness, tear resistance, pilling resistance, and wrinkle recovery were compared between worn and unworn fabrics. Wear trial participants (n=20) were asked to assess fabric comfort and performance satisfaction during wear. Results of physical testing found significant differences among blend levels and before and after wearing and care treatment levels. Tear resistance, breaking strength, stiffness, and wrinkle recovery were affected by fibre content and care level. Contrary to the authors' hypothesis, consumer satisfaction was also affected by fibre content of the fabrics.

Details

Journal of Fashion Marketing and Management: An International Journal, vol. 1 no. 4
Type: Research Article
ISSN: 1361-2026

Keywords

Article
Publication date: 5 December 2023

Yuan Li, Yanzhi Xia, Min Li, Jinchi Liu, Miao Yu and Yutian Li

In this paper the aim is that Aramid/alginate blended nonwoven fabrics were prepared, and the flame retardancy of the blended nonwoven fabrics was studied by thermogravimetric…

Abstract

Purpose

In this paper the aim is that Aramid/alginate blended nonwoven fabrics were prepared, and the flame retardancy of the blended nonwoven fabrics was studied by thermogravimetric analysis, vertical flame test, limiting oxygen index (LOI) and cone calorimeter test.

Design/methodology/approach

The advantages of different fibers can be combined by blending, and the defects may be remedied. The study investigates whether incorporating alginate fibers into aramid fibers can enhance the flame retardancy and reduce the smoke production of prepared aramid/alginate blended nonwoven fabrics.

Findings

Thermogravimetric analysis indicated that alginate fibers could effectively inhibit the combustion performance of aramid fibers at a higher temperature zone, leaving more residual chars for heat isolation. And vertical flame test, LOI and cone calorimeter test testified that the incorporation of alginate fibers improved the flame retardancy and fire behaviors. When the ratio of alginate fibers for aramid/alginate blended nonwoven fabrics reached 80%, the incorporation of alginate fibers could notably decreased peak-heat release rate (54%), total heat release (THR) (29%), peak-smoke production rate (93%) and total smoke production (86%). What is more, the lower smoke production rate and lower THR of the blends vastly reduced the risk of secondary injury in fires.

Originality/value

This study proposes to inhibit the flue gas release of aramid fiber and enhance the flame retardant by mixing with alginate fiber, and proposes that alginate fiber can be used as a biological smoke inhibitor, as well as a flame retardant for aramid fiber.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of over 2000