Search results

1 – 10 of 13
To view the access options for this content please click here
Article
Publication date: 23 August 2015

Garima Shukla, Veena Thakur and Jadhav S.K.

The production of biohydrogen from rice mill wastes, including rice bran and rice mill effluent by Clostridium acetobutylicum NCIM 2877 was investigated in a batch culture…

Abstract

The production of biohydrogen from rice mill wastes, including rice bran and rice mill effluent by Clostridium acetobutylicum NCIM 2877 was investigated in a batch culture system and optimized the temperature and pH conditions. At 35 °C with initial pH of 5.2 a yield of 55.7±0.8 ml with 88.6 ± 0.3% substrate utilization and at pH 6 the production was 68.7 ± 0.9 ml with 85 ± 1.0 % substrate utilization. Addition of metal ions resulted in better yield and substrate utilization efficiency of the bacteria. FeSO4.7H2O at a concentration of 50 mg/l gave 79.7 ± 1.5 ml with 96% of substrate utilization. Cobalt effected the production greatly by giving 96.3 ± 0.9 ml with 95.3 ± 0.7% of substrate utilization whereas Nickel didn’t showed much effective results by giving only a maximum of 74.7 ± 1.5 ml production at 25 mg/l concentration. Conclusively, it can be stated that rice mill wastes can be used as a substrate and use of metal ions will play a key role in the enhancement of biohydrogen production.

Details

World Journal of Engineering, vol. 12 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article
Publication date: 14 September 2015

Lauro Andre Ribeiro and Patricia Pereira da Silva

Currently, experimental and theoretical work is being performed to ensure that biofuels from microalgae become a reality. However, there is a considerable number of…

Abstract

Purpose

Currently, experimental and theoretical work is being performed to ensure that biofuels from microalgae become a reality. However, there is a considerable number of discussions concerning in which processes should be focussed efforts of research and development. The purpose of this paper is to provide decision support not only to help build guidelines of research to be undertaken, but also to contribute to the design of more adequate policy and funding instruments. The key objective of this study is to determine the prospects of employing microalgae into the production of biofuels within a time scale extending to 2030.

Design/methodology/approach

The Delphi method is a qualitative research aiming to support strategic future-oriented action, such as policy making in the areas of science and technology. It is especially appropriate in judgment and long-range forecasting (20-30 years) situations, when expert opinions are often the only source of information available, due to a lack of appropriate historical, economic or technical data.

Findings

The Delphi method proved to be a successful research method when expert opinions are the main source of information available, due to a lack of appropriate historical, economic or technical data and the outcomes provided a clear outline of the main issues of microalgae biofuels’ market at present and in the future.

Research limitations/implications

The outcomes might not represent the majority of the microalgae experts’ opinion due to the sample size.

Originality/value

The work presented in this paper is especially original. According to the authors’ knowledge, this is the first qualitative Delphi study related to algae biofuels.

Details

Management of Environmental Quality: An International Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1477-7835

Keywords

To view the access options for this content please click here
Article
Publication date: 7 June 2021

Ismail Hakki Hakkı Akçay, Habib Gürbüz, Hüsameddin Akçay and Mustafa Aldemir

This study seeks the effect on static thrust, thrust specific energy consumption (TSEC) and exhaust emissions of euro diesel-hydrogen dual-fuel combustion in a small…

Abstract

Purpose

This study seeks the effect on static thrust, thrust specific energy consumption (TSEC) and exhaust emissions of euro diesel-hydrogen dual-fuel combustion in a small turbojet engine.

Design/methodology/approach

Experimental studies are performed in a JetCat P80-SE type small turbojet engine. Euro diesel and hydrogen is fed through two different inlets in a common rail distributing fuel to the nozzles. Euro diesel fuel is fed by a liquid fuel pump to the engine, while hydrogen is fed by a fuel-line with a pressure of 5 bars from a gas cylinder with a pressure of approximately 200 bars.

Findings

At different engine speeds, it is found that there is a decrease at the TSEC between a range of 1% and 4.8% by different hydrogen energy fractions (HEF).

Research limitations/implications

The amount of hydrogen is adjusted corresponding to a range of 0–20% of the total heat energy of the euro diesel and hydrogen fuels. The small turbojet engine is operated between a range of 35,000 and 95,000 rpm engine speeds.

Practical implications

On the other hand, remarkable improvements in exhaust emissions (i.e. CO, CO2, HC and NOx) are observed with HEFs.

Originality/value

This is through providing improvements in performance and exhaust emissions using hydrogen as an alternative to conventional jet fuel in gas turbine engines.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article
Publication date: 10 April 2017

Ganesh Babu Katam, Veeresh Babu A., Madhu Murthy K. and Ganesh S. Warkhade

This study aims to find a new alternate source for biodiesel conversion. The alternate source must be easily available, and it should give more oil yield than available…

Downloads
2110

Abstract

Purpose

This study aims to find a new alternate source for biodiesel conversion. The alternate source must be easily available, and it should give more oil yield than available edible, inedible sources. To meet the fuel demand in the transportation sector with edible oil-based biodiesel causes food versus fuel crisis. In addition to this, it increases NOx and CO2 in the environment.

Design/methodology/approach

The present paper reviews the comparison of algae oil yield, fatty acid composition and its biodiesel properties’ effect on diesel engine characteristics.

Findings

Algae were the only source to fulfil fuel demand because its oil and biodiesel yield is higher than other sources. Algae can grow by capturing carbon dioxide from the environment, and its fatty acid composition is more suitable to run diesel engines.

Originality/value

There is an improvement in engine performance–emission tradeoff with algal biodiesel.

Details

World Journal of Engineering, vol. 14 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article
Publication date: 23 December 2015

Kiran Sethia, Alka Kaushik, S. K. Jadhav and Afaque Quraishi

A new approach in the field of renewable energy is- the microbial fuel cells (MFCs). It is a technique to produce bioelectricity from available organic waste. It is…

Abstract

A new approach in the field of renewable energy is- the microbial fuel cells (MFCs). It is a technique to produce bioelectricity from available organic waste. It is helpful to fulfill the lighting requirements of rural areas. The aim of our research work is to construct twocompartment system and to study various parameters like performance of the different combination of electrodes, optimization of pH and temperature. In this study, using bacteria as biocatalyst, the naturally found cow dung was used to generate an open circuit voltage of 0.84 ± 0.010 V and a current of 3.51 ± 0.620 mA. Optimization of various parameters shows that among different temperature range, 37°C temperature gives the highest voltage production of 0.84 ± 0.091 V and current of 3.08 ± 0.512 mA. In case of pH there are not any significant changes were found when pH range is changed. Although, pH 4.0 is found to be more efficient as it produces voltage of 0.90 ± 0.045 V and current of 4.85 ± 0.587 mA. Furthermore, three electrogenic bacterial strains were isolated and studied for their electrogenic properties individually and among them CDB-3 was found best in their performance.

Details

World Journal of Engineering, vol. 12 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article
Publication date: 24 August 2021

Praveenkumar Thaloor Ramesh, Vijayaraja Kengaiah, Endalkachew Mosisa Gutema, Prabu Velusamy and Dhivya Balamoorthy

The purpose of the study is to design economical shock tube. It is an instrument used for experimental investigations not only related to shock phenomena but also for the…

Abstract

Purpose

The purpose of the study is to design economical shock tube. It is an instrument used for experimental investigations not only related to shock phenomena but also for the behavior of the material when it is subjected to high-speed flow. The material used here in this shock tube is stainless steel ss304 and aluminum. A shock tube consists of two sections, namely, the driver and the driven. The gas in the driven and driver is filled with atmospheric air and nitrogen, respectively, under the predominant condition.

Design/methodology/approach

The focus of the study is on the design and fabrication of shock tubes. a shock tube is a research tool to make an aerodynamic test in the presence of high pressure and temperature by generating moving normal shock waves under controlled conditions.

Findings

The main necessity for instrumentation in the shock tube experiment is to know the velocity of the moving shock wave from which the other parameters can be calculated. the pressure transducers are located in the shock tube in various locations to measure aerodynamic parameters in terms of pressure.

Originality/value

The main objective of this project work is to make an experimental setup to produce supersonic velocity with the readily available material in the market in a highly safe manner.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article
Publication date: 8 February 2021

Pradeep Uttam Gaikwad, Senthil Gnanamani and Nithya Subramani

The purpose of this paper is to find the pressure and the knocking phenomena. To get the pressure values, the butterworth bandpass filter was used and the potential of…

Abstract

Purpose

The purpose of this paper is to find the pressure and the knocking phenomena. To get the pressure values, the butterworth bandpass filter was used and the potential of knocking was found by using peak-to-peak pressure values and also the species concentration. Cooled exhaust gas recirculation was the method used to minimize the knocking occurrence in the engine. Moreover, the effect of premixed methanol and start of engine (SOI) on knocking were also determined.

Design/methodology/approach

This paper deals with the compression ignition engine to investigate the unfavorable knocking behavior. The tests were carried out with the 3D model of engine fueled with waste cooking oil blended with TiO2. A number of tests were taken to find the pressure variation and the species concentration at eight different locations in the computational model.

Findings

In doing the tests, the positive intended outcome was achieved. From results, it is clear that the SOI and premixed methanol mitigated the knocking process.

Originality/value

The species concentration and pressure in the form of filtered signal were proved to be the ideal methods for evaluating the knocking event in the engine.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article
Publication date: 19 August 2021

Yong Li, Feifei Han, Xinzhe Zhang, Kai Peng and Li Dang

In this paper, with the goal of reducing the fuel consumption of UAV, the engine performance optimization is studied and on the basis of aircraft/engine integrated…

Abstract

Purpose

In this paper, with the goal of reducing the fuel consumption of UAV, the engine performance optimization is studied and on the basis of aircraft/engine integrated control, the minimum fuel consumption optimization method of engine given thrust is proposed. In the case of keeping the given thrust of the engine unchanged, the main fuel flow of the engine without being connected to the afterburner is optimally controlled so as to minimize the fuel consumption.

Design/methodology/approach

In this study, the reference model real-time optimization control method is adopted. The engine reference model uses a nonlinear real-time mathematical model of a certain engine component method. The quasi-Newton method is adopted in the optimization algorithm. According to the optimization variable nozzle area, the turbine drop-pressure ratio corresponding to the optimized nozzle area is calculated, which is superimposed with the difference of the drop-pressure ratio of the conventional control plan and output to the conventional nozzle controller of the engine. The nozzle area is controlled by the conventional nozzle controller.

Findings

The engine real-time minimum fuel consumption optimization control method studied in this study can significantly reduce the engine fuel consumption rate under a given thrust. At the work point, this is a low-altitude large Mach work point, which is relatively close to the edge of the flight envelope. Before turning on the optimization controller, the fuel consumption is 0.8124 kg/s. After turning on the optimization controller, you can see that the fuel supply has decreased by about 4%. At this time, the speed of the high-pressure rotor is about 94% and the temperature after the turbine can remain stable all the time.

Practical implications

The optimal control method of minimum fuel consumption for the given thrust of UAV is proposed in this paper and the optimal control is carried out for the nozzle area of the engine. At the same time, a method is proposed to indirectly control the nozzle area by changing the turbine pressure ratio. The relevant UAV and its power plant designers and developers may consider the results of this study to reach a feasible solution to reduce the fuel consumption of UAV.

Originality/value

Fuel consumption optimization can save fuel consumption during aircraft cruising, increase the economy of commercial aircraft and improve the combat radius of military aircraft. With the increasingly wide application of UAVs in military and civilian fields, the demand for energy-saving and emission reduction will promote the UAV industry to improve the awareness of environmental protection and reduce the cost of UAV use and operation.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article
Publication date: 13 July 2021

Milad Mousavi, Mehran Masdari and Mojtaba Tahani

Nowadays flaps and winglets are one of the main mechanisms to increase airfoil efficiency. This study aims to investigate the power performance of vertical axis wind…

Abstract

Purpose

Nowadays flaps and winglets are one of the main mechanisms to increase airfoil efficiency. This study aims to investigate the power performance of vertical axis wind turbines (VAWT) that are equipped with diverse gurney flaps. This study could play a crucial role in the design of the VAWT in the future.

Design/methodology/approach

In this paper, the two-dimensional computational fluid dynamics simulation is used. The second-order finite volume method is used for the discretization of the governing equations.

Findings

The results show that the gurney flap enhances the power coefficient at the low range of tip speed ratio (TSR). When an angled and standard gurney flap case has the same aerodynamic performance, an angled gurney flap case has a lower hinge moment on the junction of airfoil and gurney flap which shows the structural excellence of this case. In all gurney flap cases, the power coefficient increases by an average of 20% at the TSR range of 0.6 to 1.8. The gurney flap cases do not perform well at the high TSR range and the results show a lower amount of power coefficient compare to the clean airfoil.

Originality/value

The angled gurney flap which has the structural advantage and is deployed to the pressure side of the airfoil improves the efficiency of VAWT at the low and medium range of TSR. This study recommends using a controllable gurney flap which could be deployed at a certain amount of TSR.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article
Publication date: 8 December 2020

Yu-Ming Chung, Shao-Yu Lee, Yung-Kai Lin, Yung-Hao Lin, Mohamed El-Shazly, Yung-Hsiang Lin and Chi-Fu Chiang

Rambutan (Nephelium lappaceum), a ubiquitous fruit in Southeastern Asia, was rich in vitamins and phytochemicals, which were beneficial for improving of skin conditions…

Downloads
101

Abstract

Purpose

Rambutan (Nephelium lappaceum), a ubiquitous fruit in Southeastern Asia, was rich in vitamins and phytochemicals, which were beneficial for improving of skin conditions. The fermentation process increased phytochemicals and antioxidant capacity. Thus, the purpose of this paper is to examine whether phytochemicals can be increased through the fermentation process of rambutan extracts to improve skin aging.

Design/methodology/approach

In this study, the authors used the three stages of fermentation with Saccharomyces cerevisiae, Lactobacillus plantarum TCI028 and Acetobacter aceti under red light to develop a fermented rambutan extract.

Findings

The level of polyphenols of red-light-based fermented rambutan extract (RLFRE) were significantly increased 108.9% (p < 0.01) and 97% (p <0.01) compared with fermented rambutan extract (FRE) and pure rambutan extract (RE), respectively. The human skin fibroblasts treated with 0.03 or 0.06% of RLFRE can significantly decrease reactive oxygen species (ROS) levels by 0.74- (p <0.001) and 0.84-fold (p <0.001) compared with H2O2 group, respectively. And 0.03% of RLFRE can significantly increase in elastin content by 1.13-fold (p <0.05). Also, ten compounds were identified including one new phenolic compound and nine known compounds from RLFRE. Moreover, red light could enhance the levels of compounds 4, 9 and 3 by 5, 2.5 and 2.5-fold, respectively, relative to the results of FRE. The last, RLFRE isolated compounds significantly facilitated the elastin content on fibroblast (compound 1, 7, 9, 10 compared with control: p <0.001, compound 2 compared with control: p <0.001).

Originality/value

In short, this was the first study to unveil that the red-light-based fermentation can enrich the antioxidant content in a rambutan extract and its product had the potential to be developed a functional product for health-promoting effects such as skin aging.

Details

Nutrition & Food Science , vol. 51 no. 6
Type: Research Article
ISSN: 0034-6659

Keywords

1 – 10 of 13