Search results

1 – 10 of 20
Article
Publication date: 2 February 2022

Munir Ahmed, Muhammad Shakaib and Mubashir Ali Siddiqui

Combustion of fuel with oxidizer inside a combustion chamber of an internal combustion engine forms inevitable oxides of nitrogen (NOx) due to high temperature at different…

Abstract

Purpose

Combustion of fuel with oxidizer inside a combustion chamber of an internal combustion engine forms inevitable oxides of nitrogen (NOx) due to high temperature at different locations of the combustion chamber. This study aims to quantify NOx formed inside the combustion chamber using two fuels, a conventional diesel (n-heptane) and a biodiesel (methyl oleate).

Design/methodology/approach

This research uses a computational fluid dynamics simulation of chemically reacting fluid flow to quantify and compare oxides of nitrogen (NOx) in a compression ignition (CI) engine. The study expends species transport model of ANSYS FLUENT. The simulation model has provided the temperature profile inside the combustion chamber, which is subsequently used to calculate NOx using the NOx model. The simulation uses a single component hydrocarbon and oxygenated hydrocarbon to represent fuels; for instance, it uses n-heptane (C7H16) for diesel and methyl-oleate (C19H36O2) for biodiesel. A stoichiometric air–fuel mixture is used for both fuels. The simulation runs a single cylinder CI engine of 650 cm3 swept volume with inlet and exhaust valves closed.

Findings

The pattern for variation of velocity, an important flow parameter, which affects combustion and subsequently oxides of nitrogen (NOx) formation at different piston locations, is similar for the two fuels. The variations of in-cylinder temperature and NOx formation with crank angles have similar patterns for the fuels, diesel and biodiesel. However, the numerical values of in-cylinder temperature and mass fraction of NOx are different. The volume averaged static peak temperatures are 1,013 K in case of diesel and 1,121 K in case of biodiesel, while the mass averaged mass fractions of NOx are 15 ppm for diesel and 141 ppm for biodiesel. The temperature rise after combustion is more in case of biodiesel, which augments the oxides of nitrogen formation. A new parameter, relative mass fraction of NOx, yields 28% lower value for biodiesel than for diesel.

Originality/value

This work uses a new concept of simulating simple chemical reacting system model to quantify oxides of NOx using single component fuels. Simplification has captured required fluid flow data to analyse NOx emission from CI engine while reducing computational time and expensive experimental tests.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 13 September 2022

Yufang Cheng, Meng-Han Lee, Chung-Sung Yang and Pei-Yu Wu

The purpose of this study was to develop the augmented reality (AR) educational program combined with the instructional guidance for supportive learning, which enhanced the…

Abstract

Purpose

The purpose of this study was to develop the augmented reality (AR) educational program combined with the instructional guidance for supportive learning, which enhanced the thinking process cooperative discussion and problem-solving skills in chemistry subject.

Design/methodology/approach

The method used the quasi-experimental research design. Of the 45 students who attended this experiment, only 25 with low achievement qualified in operating the AR learning system of saponification and transesterification environment (ARLS-STE) system.

Findings

These results confirmed that the AR educational program could have increased substantial benefits in improvements of students’ knowledge and the ability of the thinking process for the participants with the lowest score. In semi-structured interviews, most of participants enjoyed manipulating the ARLS-STE system, which was realistic, motived and interesting for learning science subjects.

Originality/value

The low-achieving students have often been known with a low learning capability, and they lack in developing constructional knowledge, despite being keen for learning. Regarding educational concerns for this population, providing orientated learning and supportive materials could increase their learning effects. Virtual worlds are an efficient learning tool in educational setting. The AR can offer visual concepts and physical interaction for students with low achievement in learning. Thus, this study investigates the acceptability of an educational program designed in the ARLS-STE, which involves the learning effects of academic knowledge and the capability of thinking process for students with low achievement. The ARLS-STE system was developed for this proposal, based upon the marker-based AR technologies combined with hands-on manipulation.

Details

Interactive Technology and Smart Education, vol. 21 no. 1
Type: Research Article
ISSN: 1741-5659

Keywords

Article
Publication date: 12 April 2024

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf D'Souza and Thirumaleshwara Bhat

This study explores how titanium oxide (TiO2) filler influences the specific wear rate (SWR) in flax fiber-reinforced epoxy composites (FFRCs) through a Taguchi approach. It aims…

Abstract

Purpose

This study explores how titanium oxide (TiO2) filler influences the specific wear rate (SWR) in flax fiber-reinforced epoxy composites (FFRCs) through a Taguchi approach. It aims to boost abrasive wear resistance by incorporating TiO2 filler, promoting sustainable and eco-friendly materials.

Design/methodology/approach

This study fabricates epoxy/flax composites with TiO2 particles (0–8 wt%) using hand layup. Composites were tested for wear following American Society for Testing and Materials (ASTM) G99-05. Statistical analysis used Taguchi design of experiments (DOE), with ANOVA identifying key factors affecting SWR in abrasive sliding conditions.

Findings

The study illuminates how integrating TiO2 filler particles into epoxy/flax composites enhances abrasive wear properties. Statistical analysis of SWR highlights abrasive grit size (grit) as the most influential factor, followed by normal load, wt% of TiO2 and sliding distance. Grit size has the highest effect at 43.78%, and wt% TiO2 filler contributes 15.61% to SWR according to ANOVA. Notably, the Taguchi predictive model closely aligns with experimental results, validating its reliability.

Originality/value

This paper integrates TiO2 filler and flax fibers to form a novel hybrid composite with enhanced tribological properties in epoxy composites. The use of Taguchi DOE and ANOVA offers valuable insights for optimizing control variables, particularly in natural fiber-reinforced composites (NFRCs).

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 30 January 2024

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf Charles DSouza and Thirumaleshwara Bhat

The purpose of this study is to investigate the impact of titanium oxide (TiO2) filler on the abrasive wear properties of bamboo fiber reinforced epoxy composites (BFRCs) using a…

Abstract

Purpose

The purpose of this study is to investigate the impact of titanium oxide (TiO2) filler on the abrasive wear properties of bamboo fiber reinforced epoxy composites (BFRCs) using a Taguchi approach. The study aims to enhance the abrasive wear resistance of these composites by introducing TiO2 filler as a potential reinforcement, thus contributing to the development of sustainable and environmentally friendly materials.

Design/methodology/approach

This study focuses on the fabrication of epoxy/bamboo composites infused with TiO2 particles within the Wt.% range of 0–8 Wt.% using hand layup techniques. The resulting composites were subjected to wear testing according to ASTM G99-05 standards. Statistical analysis of the wear results was carried out using the Taguchi design of experiments (DOE). Additionally, an analysis of variance (ANOVA) was used to determine the influential control factors impacting the specific wear rate (SWR) and coefficient of friction (COF).

Findings

The study illuminates how integrating TiO2 filler enhances abrasive wear in epoxy/bamboo composites. Statistical analysis of SWR highlights abrasive grit size (grit) as the most influential factor, followed by normal load, Wt.% of TiO2 and sliding distance. Analysis of the COF identifies normal load as the primary influential factor, followed by grit, Wt.% of TiO2 and sliding distance. The Taguchi predictive model closely aligns with experimental results, validating its reliability. The morphological study revealed significant differences between the unfilled and TiO2-filled composites. The inclusion of TiO2 improved wear resistance, as evidenced by reduced surface damage and wear debris.

Originality/value

This research paper aims to integrate TiO2 filler and bamboo fibers to create an innovative hybrid composite material. TiO2 micro and nanoparticles show promise as filler materials, contributing to improved tribological properties of epoxy composites. The utilization of Taguchi’s DOE and ANOVA for statistical analysis provides valuable guidance for academic researchers and practitioners in optimizing control variables, especially in the context of natural fiber reinforced composites.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 2 February 2024

Shahryar Sorooshian, Navidreza Ahadi and Ahmed Zainul Abideen

This study aims to assess the response of the Association of Southeast Asian Nations (ASEAN) to cleaner production and environmental sustainability, with a specific focus on…

449

Abstract

Purpose

This study aims to assess the response of the Association of Southeast Asian Nations (ASEAN) to cleaner production and environmental sustainability, with a specific focus on identifying the leading countries and research networks driving these efforts.

Design/methodology/approach

A benchmarking academic journal was chosen, and the journal’s archive was comprehensively examined. To construct the data set, a conventional keyword search technique was applied in February 2023 to filter for ASEAN affiliations. The study used hybrid bibliometric analyses and multi-criteria decision analysis (MCDA) to analyze the collected data and address the research purpose.

Findings

The data analysis revealed a rising research trend, particularly after 2014. Malaysia had the most publications, followed by Thailand and Singapore, and their publications had the most cumulative citations among ASEAN countries. Research collaborations between Malaysia, Thailand and Singapore were frequent, but participation from other countries was low. The research topics on which ASEAN members focused were also identified, but it became apparent that there was little coordination. A scant few collaborations involving more than two countries were observed; thus, the MCDA analysis concluded that research leadership was absent in ASEAN countries.

Originality/value

This study contributes insights to the existing literature and offers a valuable overview of the research direction and collaboration status of cleaner production and environmental sustainability in the ASEAN region, thus benefiting policymakers. Additionally, this study introduces a novel approach combining bibliometrics analysis with MCDA to assess research collaboration, thus providing a novel methodology for future research policy evaluations.

Open Access
Article
Publication date: 15 January 2024

Marcello Braglia, Francesco Di Paco, Roberto Gabbrielli and Leonardo Marrazzini

This paper presents a new and well-structured framework that aims to assess the current environmental impact from a Greenhouse Gas (GHG) emissions perspective. This tool includes…

536

Abstract

Purpose

This paper presents a new and well-structured framework that aims to assess the current environmental impact from a Greenhouse Gas (GHG) emissions perspective. This tool includes a new set of Lean Key Performance Indicators (KPIs), which translates the well-known logic of Overall Equipment Effectiveness in the field of GHG emissions, that can progressively detect industrial losses that cause GHG emissions and support decision-making for implementing improvements.

Design/methodology/approach

The new metrics are presented with reference to two different perspectives: (1) to highlight the deviation of the current value of emissions from the target; (2) to adopt a diagnostic orientation not only to provide an assessment of current performance but also to search for the main causes of inefficiencies and to direct improvement implementations.

Findings

The proposed framework was applied to a major company operating in the plywood production sector. It identified emission-related losses at each stage of the production process, providing an overall performance evaluation of 53.1%. The industrial application shows how the indicators work in practice, and the framework as a whole, to assess GHG emissions related to industrial losses and to proper address improvement actions.

Originality/value

This paper scrutinizes a new set of Lean KPIs to assess the industrial losses causing GHG emissions and identifies some significant drawbacks. Then it proposes a new structure of losses and KPIs that not only quantify efficiency but also allow to identify viable countermeasures.

Details

International Journal of Productivity and Performance Management, vol. 73 no. 11
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 21 March 2024

Camille J. Mora, Arunima Malik, Sruthi Shanmuga and Baljit Sidhu

Businesses are increasingly vulnerable and exposed to physical climate change risks, which can cascade through local, national and international supply chains. Currently, few…

Abstract

Purpose

Businesses are increasingly vulnerable and exposed to physical climate change risks, which can cascade through local, national and international supply chains. Currently, few methodologies can capture how physical risks impact businesses via the supply chains, yet outside the business literature, methodologies such as sustainability assessments can assess cascading impacts.

Design/methodology/approach

Adopting a scoping review framework by Arksey and O'Malley (2005) and the PRISMA extension for scoping reviews (PRISMA-ScR), this paper reviews 27 articles that assess climate risk in supply chains.

Findings

The literature on supply chain risks of climate change using quantitative techniques is limited. Our review confirms that no research adopts sustainability assessment methods to assess climate risk at a business-level.

Originality/value

Alongside the need to quantify physical risks to businesses is the growing awareness that climate change impacts traverse global supply chains. We review the state of the literature on methodological approaches and identify the opportunities for researchers to use sustainability assessment methods to assess climate risk in the supply chains of an individual business.

Details

Journal of Accounting Literature, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-4607

Keywords

Article
Publication date: 18 April 2024

Amanda Norazman, Zulhanafi Paiman, Syahrullail Samion, Muhammad Noor Afiq Witri Muhammad Yazid and Zuraidah Rasep

The purpose of this paper is to investigate the performance of bio-based lubricants (BBL), namely, palm mid-olein (PMO) enriched with an antioxidant agent…

10

Abstract

Purpose

The purpose of this paper is to investigate the performance of bio-based lubricants (BBL), namely, palm mid-olein (PMO) enriched with an antioxidant agent, tertiary-butylhydroquinone (TBHQ) and a viscosity improver, ethylene-vinyl acetate (EVA), in journal bearing (JB) applications.

Design/methodology/approach

Samples of the BBL were prepared by blending it with TBHQ and EVA at various blending ratios. The oxidative stability (OS) and viscosity of the BBL samples were examined using differential scanning calorimetry and a viscometer, respectively. Meanwhile, their performance in JB applications was evaluated through the use of a JB test rig with a 0.5 length-to-diameter ratio at various operating conditions.

Findings

It was found that the combination of PMO + TBHQ + EVA demonstrated a superior oil film pressure and load-carrying capacity, resulting in a reduced friction coefficient and a smaller attitude angle compared to the use of only PMO or VG68. However, it was observed that the addition of TBHQ and EVA to the PMO did not have a significant impact on the minimum oil film thickness.

Practical implications

The results would be quite useful for researchers generally and designers of bearings in particular.

Originality/value

This study used PMO as the base stock, and its compatibility with TBHQ and EVA was investigated in terms of its OS and viscosity. The performance of this treated BBL was evaluated in a hydrodynamic JB.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2023-0363/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 December 2023

Norshamliza Chamhuri, Nur Syahirah Che Lah, Peter J. Batt, Muhammad Nadzif Bin Ramlan, Norain Mod Asri and Azrina Abdullah Al-Hadi

Palm oil has consistently been a staple ingredient in the Malaysian diet. Despite various promotional efforts throughout the years, the health aspects of palm oil have often been…

Abstract

Purpose

Palm oil has consistently been a staple ingredient in the Malaysian diet. Despite various promotional efforts throughout the years, the health aspects of palm oil have often been undervalued, leading consumers to overlook its benefits. This study has two objectives: (1) to explore consumer behaviour in purchasing decisions for food products containing palm oil in an emerging market and (2) to examine consumer awareness of palm oil as an ingredient in various edible products related to health.

Design/methodology/approach

A quantitative methodology that utilises a self-administered questionnaire was adopted for data collection. The conceptual framework and hypotheses were tested using partial least squares (PLS) structural equation modelling (SEM) on a dataset of 342 respondents.

Findings

The findings revealed that three hypotheses – attitude, subjective norms (SNs) and perceived health benefits – positively impact the intention to purchase palm-oil-based food products. Additionally, results indicate that Malaysian consumers practice sustainable consumption when purchasing palm-oil-based food products.

Originality/value

There is a need for a greater understanding of the importance perceived health benefits have in influencing consumers' consumption of food products containing palm oil in an emerging market such as Malaysia. This research study addresses the gap in existing knowledge.

Details

British Food Journal, vol. 126 no. 2
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 15 March 2024

Audu Ibrahim Ali, Mohd Kameil Abdul Hamid, Mohd Azman Bin Abas, Mohd Farid Muhamad Said, Anthony Chukwunonso Opia, Izhari Izmi Bin Mazali and Zul Hilmi Bin Che Daud

Due to the environmental issues caused by petroleum lubricants used in lubrication, the concept of creating various bio-lubricants requires research globally. Thus, this study…

Abstract

Purpose

Due to the environmental issues caused by petroleum lubricants used in lubrication, the concept of creating various bio-lubricants requires research globally. Thus, this study aims to develop, characterize and test the base ficus carica oil (fig oil) for its ethylene vinyl acetate copolymer (EVA) and sodium dodecylbenzene sulfonate (SDBS) content.

Design/methodology/approach

The sample characterization was done using the Fourier transmission infrared spectrum, whereas the morphologies of the EVA, SDBS particles and lubricated surfaces were carried out under scanning electron microscope equipment. To ensure the homogeneity of the solution (base oil and additives), the formulations were subjected to the sonication process. The anti-friction and anti-wear properties of EVA and SDBS particles as lubricant additives were investigated using a ball on a flat high-frequency reciprocating rig tribo-tester.

Findings

According to the findings, the base oil’s anti-friction and anti-wear capabilities can be greatly enhanced by the additions. revealed that the best results were obtained when 1.2% EVA + 2% SDBS was applied for the examination of wear (597.8 µm) and friction coefficient (0.106). Commercial references were used, nevertheless, and the results were excellent. This is because the particles in the contact area during lubrication have strong solubility and quickly penetrate the contact zone. The lubricating mechanisms were explained by a tribological model of the EVA + SDBS and SDBS particles.

Research limitations/implications

The coefficient of friction and wear reduction caused by the use of the additives will certainly enhance system performance and protect the machine components from excessive wear that could cause damage or failure.

Originality/value

The originality and uniqueness of this work are officially affirmed by the authors. The authors’ autonomous and original contribution to the development of sustainable lubrication is represented in this work. To the best of the authors’ knowledge, no other study has been published or made publicly available that duplicates the precise scope and goals of our research, and this conclusion is based on a thorough literature assessment.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 20