Search results

1 – 10 of 43
Article
Publication date: 4 September 2019

Intan Najwa Humaira Mohamed Haneef, Norhashimah Shaffiar, Yose Fachmi Buys and Abdul Malek Abd. Hamid

The internal fixation plate of bone fractures by using polylactic acid (PLA) has attracted the attention of many researchers, as it is biodegradable and biocompatible to the human…

Abstract

Purpose

The internal fixation plate of bone fractures by using polylactic acid (PLA) has attracted the attention of many researchers, as it is biodegradable and biocompatible to the human body. However, its brittleness has led to implant fracture. On the contrary, polypropylene carbonate (PPC), which is also biodegradable and biocompatible, has an excellent elongation at break. The purpose of this paper is to compare the PLA fixation plate with the new fixation plate made up of PLA/PPC blends by using finite element analysis (FEA).

Design/methodology/approach

The mandible bone from CT data set and fixation plate was designed by using the MIMICS, Amira and Solidworks softwares. Abaqus software was used for FEA of PLA/PPC fixation plate applied on the fractured mandible bone. A model of mandibular bone with a fracture in the body was subjected to incisor load. The analysis was run to determine the von Mises stress, elongation of the fixation plate and the displacement of the fractured gap of PLA/PPC blends fixation plate.

Findings

The von Mises stress predicted that all the blend compositions were safe to be used as a fixation plate since the stress values were less than the yield strength. In addition, the stress value of the fixation plate was gradually decreased up to 20 percent when the amount of PPC increased to 30 percent. This indicates that the stress shielding effect was successfully reduced. The elongation of the fixation plate was gradually increased from 11.54 to 12.55 µm as the amount of PPC in the blends increased from 0 to 30 percent, thereby illustrating that the flexibility of the fixation plate was improved by the addition of PPC. Finally, the measured displacement of the fractured gap for all compositions of PLA/PPC blends fixation plate is less than 150 µm, which proves the likely success of fracture fixation by using the PLA/PPC blends.

Research limitations/implications

An optimum solution of PLA/PPC blends and another new material such as compatibilizer need to be introduced in the blends in order to improve the performance of PLA/PPC blends as a new material for a fixation plate. Besides, by using the same method of producing PLA/PPC blends, longer durations for in vitro degradation of PLA/PPC blends are essential to further understand the degradation behavior of the blends applied in the human body. Finally, it is also important to further test the mechanical strength of PLA/PPC blends during the degradation period to know the current strength of the implant in the healing process of the bone.

Practical implications

PLA fixation plate and screw can commercially be used in CMF surgery since they reduce cost because of the elimination of secondary surgery to remove the fixation plate and screw after the healing process.

Social implications

It is hoped that the advantages of this research will ensure the market of PLA product to continue expanding in medical application.

Originality/value

This study is one of the alternative ways for the biomedical researchers to improve the elongation break of PLA. Currently, many researchers focus on polymeric materials such as PLA, poly(glycolic) acid and polydioxanone blends, which were extensively being used in CMF surgery. However, the work on PLA/PPC blends to be used as one of the materials for the CMF fixation plate is very limited, if any. PPC, the proposed material for this research, will improve the mechanical performance of PLA fixation plate and screw to become more sustainable and flexible when applied on human mandible bone.

Details

International Journal of Structural Integrity, vol. 10 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 17 June 2021

Alper Ekinci, Xiaoxiao Han, Andrew Gleadall and Andrew Allan Johnson

This paper aims to establish an appropriate annealing method, which is necessary for shape stability and to evaluate their potential degradation performance of 1-, 3- and 5-layer…

Abstract

Purpose

This paper aims to establish an appropriate annealing method, which is necessary for shape stability and to evaluate their potential degradation performance of 1-, 3- and 5-layer material extruded polylactic-acid specimens by enhancing their thermal and mechanical properties.

Design/methodology/approach

The distortion of each layered printed specimen subjected to degradation was calculated in x- and y-direction. Each layered specimen was subjected to annealing at 70°C, 80°C and 90°C for 2 h and at 80°C for 1, 4, 8 and 16 h. Thermal, molecular weight and mechanical properties were calculated using, differential scanning calorimetry, gel permeation chromatography and tensile testing machine, respectively.

Findings

In the x-direction, distortion was 16.08 mm for one-layer non-annealed printed specimens and decreased by 73% and 83% for 3- and 5-layer, respectively, while each layered non-annealed specimen subjected to degradation at 37°C for one month. Within the outlined study, annealing treatment enhances properties such as the degree of crystallinity (%χ) up to 34%, Young’s modulus (E) by 30% and ultimate tensile strength by 20% compared to the non-annealed specimens.

Practical implications

The future research accomplishments will be concentrated on the design, development and optimisation of degraded biomedical implants using material extrusion thin films including drug delivery system and fixation plates.

Originality/value

The printed thin specimens subjected to degradation were investigated. This research developed a new understanding of the effect of the annealing temperature and time on the mechanical, thermal and molecular weight properties for each layered specimen.

Details

Rapid Prototyping Journal, vol. 27 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 April 1992

JAROSLAV MACKERLE

This bibliography is offered as a practical guide to published papers, conference proceedings papers and theses/dissertations on the finite element (FE) and boundary element (BE…

Abstract

This bibliography is offered as a practical guide to published papers, conference proceedings papers and theses/dissertations on the finite element (FE) and boundary element (BE) applications in different fields of biomechanics between 1976 and 1991. The aim of this paper is to help the users of FE and BE techniques to get better value from a large collection of papers on the subjects. Categories in biomechanics included in this survey are: orthopaedic mechanics, dental mechanics, cardiovascular mechanics, soft tissue mechanics, biological flow, impact injury, and other fields of applications. More than 900 references are listed.

Details

Engineering Computations, vol. 9 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 10 October 2018

Chander Prakash, Sunpreet Singh, Ilenia Farina, Fernando Fraternali and Luciano Feo

Porous implant surface is shown to facilitate bone in-growth and cell attachment, improving overall osteointegration, while providing adequate mechanical integrity. Recently…

1109

Abstract

Purpose

Porous implant surface is shown to facilitate bone in-growth and cell attachment, improving overall osteointegration, while providing adequate mechanical integrity. Recently, biodegradable material possessing such superior properties has been the focus with an aim of revolutionizing implant’s design, material and performance. This paper aims to present a comprehensive investigation into the design and development of low elastic modulus porous biodegradable Mg-3Si-5HA composite by mechanical alloying and spark plasma sintering (MA-SPS) technique.

Design/methodology/approach

This paper presents a comprehensive investigation into the design and development of low elastic modulus porous biodegradable Mg-3Si-5HA composite by MA-SPS technique. As the key alloying elements, HA powders with an appropriate proportion weight 5 and 10 are mixed with the base elemental magnesium (Mg) particles to form the composites of potentially variable porosity and mechanical property. The aim is to investigate the performance of the synthesized composites of Mg-3Si together with HA in terms of mechanical integrity hardness and Young’s moduli corrosion resistance and in-vitro bioactivity.

Findings

Mechanical and surface characterization results indicate that alloying of Si leads to the formation of fine Mg2 Si eutectic dense structure, hence increasing hardness while reducing the ductility of the composite. On the other hand, the allying of HA in Mg-3Si matrix leads to the formation of structural porosity (5-13 per cent), thus resulting in low Young’s moduli. It is hypothesized that biocompatible phases formed within the composite enhanced the corrosion performance and bio-mechanical integrity of the composite. The degradation rate of Mg-3Si composite was reduced from 2.05 mm/year to 1.19 mm/year by the alloying of HA elements. Moreover, the fabricated composites showed an excellent bioactivity and offered a channel/interface to MG-63 cells for attachment, proliferation and differentiation.

Originality/value

Overall, the findings suggest that the Mg-3Si-HA composite fabricated by MA and plasma sintering may be considered as a potential biodegradable material for orthopedic application.

Details

PSU Research Review, vol. 2 no. 2
Type: Research Article
ISSN: 2399-1747

Keywords

Article
Publication date: 10 January 2023

Shrutika Sharma, Vishal Gupta and Deepa Mudgal

The implications of metallic biomaterials involve stress shielding, bone osteoporosis, release of toxic ions, poor wear and corrosion resistance and patient discomfort due to the…

Abstract

Purpose

The implications of metallic biomaterials involve stress shielding, bone osteoporosis, release of toxic ions, poor wear and corrosion resistance and patient discomfort due to the need of second operation. This study aims to use additive manufacturing (AM) process for fabrication of biodegradable orthopedic small locking bone plates to overcome complications related to metallic biomaterials.

Design/methodology/approach

Fused deposition modeling technique has been used for fabrication of bone plates. The effect of varying printing parameters such as infill density, layer height, wall thickness and print speed has been studied on tensile and flexural properties of bone plates using response surface methodology-based design of experiments.

Findings

The maximum tensile and flexural strengths are mainly dependent on printing parameters used during the fabrication of bone plates. Tensile and flexural strengths increase with increase in infill density and wall thickness and decrease with increase in layer height and wall thickness.

Research limitations/implications

The present work is focused on bone plates. In addition, different AM techniques can be used for fabrication of other biomedical implants.

Originality/value

Studies on application of AM techniques on distal ulna small locking bone plates have been hardly reported. This work involves optimization of printing parameters for development of distal ulna-based bone plate with high mechanical strength. Characterization of microscopic fractures has also been performed for understanding the fracture behavior of bone plates.

Details

Rapid Prototyping Journal, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 February 2024

Nagla Elshemy, Mona Ali and Reem Nofal

The purpose of this study is to successfully apply ultrasonic waves for the quick extraction of flax seed gum from flaxseed hull or whole seed and compare it to the standard…

18

Abstract

Purpose

The purpose of this study is to successfully apply ultrasonic waves for the quick extraction of flax seed gum from flaxseed hull or whole seed and compare it to the standard technique of extraction.

Design/methodology/approach

The effect of the heating source, extracted time, temperature and pH of extracted solution on the extraction was studied. The obtained gum is subsequently used for silk screen printing on cotton, linen and viscous fabrics. Rheological properties and viscosity of the printing paste were scrutinized in the current study to get a better insight into this important polysaccharide. The output of this effort aimed to specify the parameters of the processes for printing textiles to serve in women’s fashion clothes by applying innovated handmade combinations of Islamic art motives using a quick and affordable method. Seven designs are executed, and inspiring from them, seven fashion designs of ladies’ clothes were designed virtually by Clo 3D software.

Findings

The result recorded that the new gum has excellent printing properties. In addition, they have better rheological properties, viscosity, chromatic strength and fastness qualities, all of which could help them in commercial production.

Research limitations/implications

Flaxseed and three different fabric types (Cotton, Linen and Viscous) were used.

Practical implications

Synthesis of a new biodegradable thickener from a natural resource, namely, flaxseed, by applying new technology to save time, water and energy.

Originality/value

Synthesis of eco-friendly biodegradable thickener and used in textile printing alternative to the synthetic thickener.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 7 November 2023

Fareha Asim, Farhana Naeem and Shenela Naqvi

Face masks are the most recommended precautionary measure since the emergence of SARS-CoV-2 since 2020 and the most useful PPE against this virus and its variants so far. This…

Abstract

Purpose

Face masks are the most recommended precautionary measure since the emergence of SARS-CoV-2 since 2020 and the most useful PPE against this virus and its variants so far. This study aims to develop reusable and biodegradable mask from 100% regenerated bamboo or/and its blend. Selection of natural and regenerated textile materials is to minimize generation of solid waste. This attempt will eventually protect our earth by minimizing or better discontinuing the production of the disposable nonbiodegradable face masks available worldwide.

Design/methodology/approach

Hundred percent regenerated bamboo and 50:50 bamboo:cotton were selected to knit plain and interlock fabrics for manufacturing of reusable sustainable face masks. A 23 32-mixed-level factorial design was applied to study the effect of liquor ratio and temperatures, fabric structure, blend ratios and finishes at three different levels. Model 23 32 has two factors (liquor ratio and temperatures) at three levels and three factors (fabric structure, blend ratios and type of finish) at two levels. Knitted fabrics were then applied with antibacterial finishes; sanitized T99-19 and sanitized T27-22, separately at three different liquor ratios (1:10, 1:12 and 1:15) and temperatures (45, 55 and 65 °C) via exhaust method. After completing processing, fabric thickness, pilling resistance, dimensional stability, bursting strength, Berger whiteness index, air permeability and antibacterial properties of each trial were evaluated using standard test procedures.

Findings

Selected fabrics treated either by sanitized T27 or sanitized T99 in a liquor ratio of 1:15 against 65 °C, showed excellent bacteriostatic/bactericidal activity. However, 100% regenerated bamboo interlock knitted fabric treated with sanitized T99 in a liquor ratio of 1:15 at 65 °C has the most desired values of dimensional stability, pilling resistance, Berger whiteness, fabric thickness, air permeability and bursting strength which made it the best for the manufacturing of the masks. Reusable mask is comprised of three layers in which the first and the third layers were of selected 100% regenerated bamboo fabric while a PM2.5 filter was inserted in between. Bacterial filtration efficiency, particle filtration efficiency, biocompatibility and microbial cleanliness will be evaluated in future, to compare the performance of proposed reusable and biodegradable face mask with N95 masks and other fabric masks available commercially.

Originality/value

This study resulted in a development of reusable eco-friendly facemask which was not attempted by the preceding investigations. Outcomes of this work pave the way for a greener and safer earth by using easily obtainable regenerated bamboo fabrics, antibacterial finishes and knitted structures.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 18 February 2022

Jasvinder Singh, Pulak Mohan Pandey, Tejinder Kaur and Neetu Singh

The purpose of this paper is to fabricate pre-existing geometries of the stents using solvent cast 3D printing (SC3P) and encapsulation of each stent with heparin drug by using…

Abstract

Purpose

The purpose of this paper is to fabricate pre-existing geometries of the stents using solvent cast 3D printing (SC3P) and encapsulation of each stent with heparin drug by using aminolysis reaction.

Design/methodology/approach

The iron pentacarbonyl powder and poly-ɛ-caprolactone blend (PCIP) were used to print stent designs of Art18z, Palmaz-Schatz and Abbott Bvs1.1. The properties of antithrombosis, anticoagulation and blood compatibility were introduced in the stents by conjugation of heparin drug via the aminolysis process. The aminolysis process was confirmed by energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy due to presence of amide group and nitrogen peak in the respective analysis. Biological studies were performed to depict the cell viability, hemocompatibility and antithrombotic properties. Besides, mechanical behaviors were analyzed to study the behavior of the stents under radial compression load and bending load.

Findings

The amount of heparin immobilized on the Art18z, Palmaz-Schatz and Abbott Bvs1.1 stents were 255 ± 27, 222 ± 30 and 212 ± 13 µg, respectively. The cell viability studies using L929 fibroblast cells confirmed the cytocompatibility of the stents. The heparinized SC3P printed stents displayed excellent thrombo-resistance, anticoagulation properties and hemocompatibility as confirmed by blood coagulation analysis, platelet adhesion test and hemolysis analysis. Besides, mechanical behavior was found in context of the real-life stents. All these assessments confirmed that the developed stents have the potential to be used in the real environment of coronary arteries.

Originality/value

Various customized shaped biodegradable stents were fabricated using 3D printing technique and encapsulated with heparin drug using aminolysis process.

Article
Publication date: 19 April 2022

Raj Agarwal, Vishal Gupta and Jaskaran Singh

The complications caused by metallic orthopaedic bone screws like stress-shielding effect, screw loosening, screw migration, higher density difference, painful reoperation and…

Abstract

Purpose

The complications caused by metallic orthopaedic bone screws like stress-shielding effect, screw loosening, screw migration, higher density difference, painful reoperation and revision surgery for screw extraction can be overcome with the bioabsorbable bone screws. This study aims to use additive manufacturing (AM) technology to fabricate orthopaedic biodegradable cortical screws to reduce the bone-screw-related-complications.

Design/methodology/approach

The fused filament fabrication technology (FFFT)-based AM technique is used to fabricate orthopaedic cortical screws. The influence of various process parameters like infill pattern, infill percentage, layer height, wall thickness and different biological solutions were observed on the compressive strength and degradation behaviour of cortical screws.

Findings

The porous lattice structures in cortical screws using the rapid prototyping technique were found to be better as porous screws can enhance bone growth and accelerate the osseointegration process with sufficient mechanical strength. The compressive strength and degradation rate of the screw is highly dependent on process parameters used during the fabrication of the screw. The compressive strength of screw is inversely proportional to the degradation rate of the cortical screw.

Research limitations/implications

The present study is focused on cortical screws. Further different orthopaedic screws can be modified with the use of different rapid prototyping techniques.

Originality/value

The use of rapid prototyping techniques for patient-specific bone screw designs is scantly reported. This study uses FFFT-based AM technique to fabricate various infill patterns and porosity of cortical screws to enhance the design of orthopaedic cortical screws.

Details

Rapid Prototyping Journal, vol. 28 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 August 2023

Muhammad Waqas, Dingyong He, Zhen Tan, Peng Yang, Mu Gao and Xingye Guo

The selective laser melting (SLM) technique, as a typical additive manufacturing process, is widely used for the fabrication of metallic biomedical components. In terms of…

Abstract

Purpose

The selective laser melting (SLM) technique, as a typical additive manufacturing process, is widely used for the fabrication of metallic biomedical components. In terms of biodegradability, zinc and its alloys represent an emerging generation of metallic materials for biomedical implants. The purpose of this paper is to obtain the Zn and Zn10Mg alloys with high mechanical properties using the SLM technology. The relationship between the processing parameters and the porosity of pure Zn and Zn10Mg alloy samples was investigated.

Design/methodology/approach

The samples were fabricated using SLM technology working in an inert gas closed chamber. Preliminary experiments were conducted to analyze the laser power and gas flow on evaporation, single track form and porosity. To evaluate the influence of factors on relative density, the response surface methodology was applied.

Findings

The satisfactory results of the proposed method were achieved, in which the relative density of the components reached up to 99.63%, and compression strength reached 214 ± 13 MPa under optimal processing conditions.

Originality/value

Zinc is categorized by its low melting and boiling point, which leads to the high porosity of the components. It is difficult to prepare the Zn alloy samples with high relative density using SLM technology. This work successfully achieved dense Zn and Zn10Mg samples and investigated their microstructure, mechanical properties and corrosion behavior.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 43