Search results

1 – 10 of 102
Article
Publication date: 19 April 2013

Arvydas Stoncius, Irma Liascukiene, Sigitas Jankauskas and Svajus J. Asadauskas

Workmanship concerns lead to more focus on volatile materials, released by industrial lubricants. Typically, flash point test and thermo‐gravimetrical analysis (TGA) are used to…

Abstract

Purpose

Workmanship concerns lead to more focus on volatile materials, released by industrial lubricants. Typically, flash point test and thermo‐gravimetrical analysis (TGA) are used to investigate basestock volatility, but they do not address long‐term decomposition tendencies of lubricants. The extent of volatile losses due to chemical degradation (oxidation, hydrolysis, dissociation, etc.) remains unclear.

Design/methodology/approach

Vaporisation tendencies of eight additive‐free bio‐based, synthetic and mineral basestocks with similar viscosities were compared experimentally in a 30‐80 h degradation test. Thin films (30‐50 μm) of oils were placed on the steel surface and heated to 130‐140°C with periodic cooling to room temperatures for gravimetric measurement of volatile losses.

Findings

Mineral oils lost some fractions initially, but their evaporation subsided afterwards. To the contrary, PAO, polyglycol and polyol ester type oils showed low losses early into the test, but later they started producing high amounts of volatiles. After approx. 10‐15 h the evaporation from mineral oils was clearly lower than that from synthetic or bio‐based oils with substantially higher flash points.

Originality/value

Test results challenge the existing viewpoint that viscous oils with high flash points are non‐volatile. It was found that even fully synthetic and bio‐based oils lost more than 30 wt.% contents, despite being considered almost non‐volatile. Such extensive decomposition of oil films should be taken into account when making the equipment‐engineering or workmanship‐related decisions in the industry.

Details

Industrial Lubrication and Tribology, vol. 65 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 August 2021

P. Pranav, E. Sneha and S. Rani

This paper aims to provide a detailed review of various cutting fluids (CFs).

Abstract

Purpose

This paper aims to provide a detailed review of various cutting fluids (CFs).

Design/methodology/approach

Friction and wear are inevitable in machine parts in motion. The industrial sector uses various kinds of lubricants, which include engine oils, CFs, hydraulic fluids, greases, etc. to control friction and wear. The main purpose of using CF is to remove heat produced during machining and to reduce cutting forces, tool wear and energy associated with it. Thus, it increases the productivity and quality of the manufacturing process. But more than 80% of the CFs used in the industries now are mineral oil-based. These mineral oils and additives are highly undesirable because of their toxicity, nonbiodegradability, pollution and ecological problems. Hence, these petroleum-based oils in the lubrication system can be substituted with alternatives such as vegetable-based CF. Several studies are being conducted in the field of eco-friendly CFs. Because of the variance in fatty acid profile and availability, the selection of vegetable oils (VOs) is another problem faced nowadays. The present study is focused on bio-based oils and many eco-friendly additives. Various machining processes and comparisons relating to the same have also been made. The aim is to minimize the use of mineral oil and thereby introduce sustainability in production.

Findings

In this present study, bio-based oils, additives and various characteristic behavior of them in machining are being discussed. The VOs are found to be a potential base oil for industrial CFs.

Originality/value

This paper describes the importance of sustainable CFs.

Details

Industrial Lubrication and Tribology, vol. 73 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 May 2017

Sharul Hafiq Roslan, Sharifah Bee Abd Hamid and Nurin Wahidah Mohd Zulkifli

The purpose of this study is to synthesise and characterise surface-capped molybdenum sulphide (SCMS) nanoparticles using the solvothermal method and to investigate their…

Abstract

Purpose

The purpose of this study is to synthesise and characterise surface-capped molybdenum sulphide (SCMS) nanoparticles using the solvothermal method and to investigate their tribological behaviour towards friction improver and wear reduction for bio-based lubricant oil additives.

Design/methodology/approach

The design of the experiment was to use freshly prepared molybdenum (II) acetate, thioacetamide, fatty acid and hexane as the solvent inside an autoclave vessel which is heated at high temperature and pressure. Various types of fatty acids were used as the capping agent, such as caproic, lauric, stearic and oleic acid. The SCMS nanoparticles formed were characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffractometry, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and thermal gravimetric analysis. These nanoadditives were then blended into pentaerythrityl tetracaprylate/caprate ester at 0.05 Wt.% concentration. The formulated bio-based lubricant oil samples were tested for viscosity, viscosity index (VI) and density based on standard method ASTM D445 and ASTM D2270. A four-ball test was carried out for determination of coefficient of friction and wear scar diameter. The wear scar formed on the surface of the ball bearing was analysed using scanning electron microscopy.

Findings

The characterisation results showed that SCMS nanoparticles were successfully formed with amorphous ball-like structure, and the presence of the capping layer surrounding the nanoparticles was confirmed. Then, the formulated bio-based lubricant oil with addition of nanoadditives displays improved tribological properties in term of VI, antifriction and wear reduction.

Originality/value

This research provides a synthesis method of producing SCMS nanoparticles using the organomolybdenum complex as the chemical precursor through the solvothermal reaction approach. Besides that, it also gives an alternative antifriction and antiwear nanoadditive for formulation of the bio-based lubricant oil.

Details

Industrial Lubrication and Tribology, vol. 69 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 August 2002

Dharma R. Kodali

Lubricants impact on the environment at all stages of production, usage and disposal. The awareness and concern over the usage of petroleum‐based products and their impact on the…

2018

Abstract

Lubricants impact on the environment at all stages of production, usage and disposal. The awareness and concern over the usage of petroleum‐based products and their impact on the environment have created an opportunity to produce environmentally acceptable lubricants from agricultural feedstocks. A new class of bio‐based esters derived from vegetable oils that exhibit excellent low temperature flow properties and oxidation stability are discussed. One of the major advantages of bio‐based synthetic esters in better performance at a lower cost compared to synthetic esters. This is possible due to recent advances in the biotechnology of vegetable oils and the chemical modifications that could be applied to convert these natural esters into high performance biolubricants.

Details

Industrial Lubrication and Tribology, vol. 54 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 September 2015

Juozas Padgurskas, Raimundas Rukuiža, Arturas Kupcinskas and Raimondas Kreivaitis

The purpose of this paper is to conduct research on the possibility of improving the tribological and utilization properties of lard and rapeseed oil bio-based greases by mixing…

Abstract

Purpose

The purpose of this paper is to conduct research on the possibility of improving the tribological and utilization properties of lard and rapeseed oil bio-based greases by mixing it with ethanol and selection of thickener and modification with special biological additives.

Design/methodology/approach

Rapeseed oil- and lard-based greases with sodium and lithium soap thickeners were mixed with either water or ethanol and modified with a special biological anti-wear additive. Tribological properties of modified lubricants evaluated on a four-ball machine.

Findings

Rapeseed oil- and lard-based greases suspended in ethanol and modified with bio-additive have the same wear resistance as the industrial non-biological lubrication grease and much higher wear resistance as bio-based reference grease. The tribological efficiency of the additives is higher in greases of rapeseed oil and less efficient in lard-based greases. Oxidation and wear tests show that investigated bio-based greases have comparatively stable tribological properties also after their aging. Modified greases have sufficient consistence according penetration measurements and high thermal resistance according drop-point temperature measurements. All produced experimental greases pass within the category of the easily degradable materials.

Originality/value

The greases mixed with the ethanol make possible to form more homogeneous and stable grease mixture. Modified bio-based greases have significantly higher wear resistance as bio-based reference grease, their lubrication properties are stable also after the aging and are categorized as easily degradable materials.

Details

Industrial Lubrication and Tribology, vol. 67 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 April 2024

Amanda Norazman, Zulhanafi Paiman, Syahrullail Samion, Muhammad Noor Afiq Witri Muhammad Yazid and Zuraidah Rasep

The purpose of this paper is to investigate the performance of bio-based lubricants (BBL), namely, palm mid-olein (PMO) enriched with an antioxidant agent…

11

Abstract

Purpose

The purpose of this paper is to investigate the performance of bio-based lubricants (BBL), namely, palm mid-olein (PMO) enriched with an antioxidant agent, tertiary-butylhydroquinone (TBHQ) and a viscosity improver, ethylene-vinyl acetate (EVA), in journal bearing (JB) applications.

Design/methodology/approach

Samples of the BBL were prepared by blending it with TBHQ and EVA at various blending ratios. The oxidative stability (OS) and viscosity of the BBL samples were examined using differential scanning calorimetry and a viscometer, respectively. Meanwhile, their performance in JB applications was evaluated through the use of a JB test rig with a 0.5 length-to-diameter ratio at various operating conditions.

Findings

It was found that the combination of PMO + TBHQ + EVA demonstrated a superior oil film pressure and load-carrying capacity, resulting in a reduced friction coefficient and a smaller attitude angle compared to the use of only PMO or VG68. However, it was observed that the addition of TBHQ and EVA to the PMO did not have a significant impact on the minimum oil film thickness.

Practical implications

The results would be quite useful for researchers generally and designers of bearings in particular.

Originality/value

This study used PMO as the base stock, and its compatibility with TBHQ and EVA was investigated in terms of its OS and viscosity. The performance of this treated BBL was evaluated in a hydrodynamic JB.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2023-0363/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 September 2021

Pramod S. Kathamore and Bhanudas D. Bachchhav

The screening of lube oil performance prior to field trials is the most significant for the formulation of novel lubricants. This paper aims to investigate the efficacy of…

Abstract

Purpose

The screening of lube oil performance prior to field trials is the most significant for the formulation of novel lubricants. This paper aims to investigate the efficacy of trimethylolpropane trioleate oil (TMPTO) based lubricants with different additives.

Design/methodology/approach

In this endeavor, initially five lubricating blends along-with TMPTO based oil with variable additives were evaluated for their tribological performances using ASTM standards. Out of these, the top three best-performing oils were further investigated for possible physical or chemical synergies among lube oils, additives and ball surface using SEM. The molecule structures of TMPTO based lube oils were confirmed using Fourier transform infrared spectroscopy (FTIR).

Findings

The wear preventive and extreme pressure characteristics of different TMPTO based samples were evaluated and compared for compatibility and synergy of additives. Morphological analysis of SEM images was used to understand the wear behavior of the worn surfaces.

Practical implications

Further investigation of TMPTO oil on its oxidation stability at high temperature and pressure to make it technologically competitive and commercially viable metal-working lubricant is suggested.

Originality/value

This paper highlights the tribo-effects of TMPTO to be rendered as a suitable lubricant for metal-cutting operations. The surface morphology of the worn-out surface significantly demonstrates the effect of loading conditions.

Details

Industrial Lubrication and Tribology, vol. 73 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 May 2018

Vishwanath B. Awati, Shankar Naik and Mahesh Kumar N.

The purpose of this paper is to study the elastohydrodynamic lubrication point contact problem with bio-based oil as lubricants for an isothermal case. The simulation of the…

Abstract

Purpose

The purpose of this paper is to study the elastohydrodynamic lubrication point contact problem with bio-based oil as lubricants for an isothermal case. The simulation of the problem is analyzed on smooth and rough asperity.

Design/methodology/approach

The modified Reynolds equation is discretized using finite difference and multigrid method with full approximation scheme (FAS), applied for its solution with varying load and speed.

Findings

This paper traces out the comparison of minimum and central film thickness with the standard formulation of Hamrock and Dowson. The effect of longitudinal roughness on surfaces is investigated by means of numerical simulations.

Originality/value

The results obtained are comparable with the standard results, and are shown by graphs and tables. Bio-based products bring out an alternative source of lubricant to reduce energy crises.

Details

Industrial Lubrication and Tribology, vol. 70 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 June 2022

Debasmita Mohanty, Krishnan Kanny, Smita Mohanty and Sanjay K. Nayak

The purpose of this study is to reduce the application of petroleum in automobile paint industry by replacing it with bio-based castor oil along with nano fillers to synthesize…

Abstract

Purpose

The purpose of this study is to reduce the application of petroleum in automobile paint industry by replacing it with bio-based castor oil along with nano fillers to synthesize automobile base coat (BC).

Design/methodology/approach

Bio-based polyurethane (PU) coating applicable in automobile BC was synthesized by using modified castor oil incorporated with nano silica (NS) and titanium-based pigment particles. The influential characteristics of the coating was studied by carrying out cross-cut tape test, abrasion resistance, pencil hardness, lap-shear, thermo gravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis and acid, alkali and oil resistance tests.

Findings

Incorporation of NS particles, along with titanium-based pigment particles in optimized ratio into the paint matrix, increases the mechanical, chemical and oil resistance properties and hydrophobicity of the BC, and the findings are compared with the petro-based commercial BC.

Research limitations/implications

There is no significant improvement in thermal properties of the paint matrix, and it is less thermally stable than the commercial BC.

Practical implications

The paint developed through this study provides a simple and practical solution to reduce the petro-based feed-stock in automobile paint industry.

Originality/value

The current work which reports the use of ecofriendly PU BC for automobile paint applications is novel and findings of this study are original.

Details

Pigment & Resin Technology, vol. 52 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 8 October 2018

Binnur Sagbas

The purpose of this paper is to investigate applicability of hexagonal boron nitride (h-BN) powder as a solid lubricant additive in coconut oil and to determine the tribological…

Abstract

Purpose

The purpose of this paper is to investigate applicability of hexagonal boron nitride (h-BN) powder as a solid lubricant additive in coconut oil and to determine the tribological behavior of PEEK rubbed with DIN2080 tool steel, under prepared green lubricating condition.

Design/methodology/approach

In this study, tiribological performance of PEEK against the DIN2080 tool steel is investigated with green lubricant. Coconut oil was used as green lubricant and 4 per cent wt. h-BN powder was added as lubricant additive into the coconut oil. Reciprocal pin-plate tribological test were applied under dry, coconut oil and coconut oil+h-BN lubrication condition. Friction coefficients were recorded and wear behavior of the samples investigated by mass loss measurement and topographical inspection of wear track by optical profilometer.

Findings

Using coconut oil as lubricant provided 80 per cent reduction of friction coefficient and 33.4 per cent reduction of wear rate. Addition of h-BN into the coconut oil provide 84 per cent reduction of friction coefficient and 56 per cent reduction of wear rate. The results showed that vegetable oil is promising lubricant for sustainable manufacturing. h-BN serves to increase lubricant performance and decrease wear of the surfaces.

Practical implications

Petrochemical lubricants are one of the major sources of environmental pollution and health hazards. Development and use of environmental and health friendly lubricants support sustainability and reduce wear, friction and energy consumption. With this consciousness, recent studies have focused on green tribology and green lubricants such as vegetable oils, ionic liquid bio-lubricants and bio-based polymers.

Originality/value

In literature study coconut oil was proposed as green lubricant while h-BN powder was proposed as solid lubricant. However, applicability of h-BN powder in coconut oil has not been explored yet. Moreover, wear and friction property of PEEK material with DIN 2080 tool steel pair surface has not been studied yet with green lubricants.

Details

Industrial Lubrication and Tribology, vol. 72 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 102