Search results

1 – 10 of 583
Article
Publication date: 16 March 2015

Yun Bai and Christopher B Williams

The purpose of this paper is to explore the use of binder jetting to fabricate high-purity copper parts. The ability to fabricate geometrically complex copper shapes would have…

3744

Abstract

Purpose

The purpose of this paper is to explore the use of binder jetting to fabricate high-purity copper parts. The ability to fabricate geometrically complex copper shapes would have implications on the design and manufacture of components for thermal management systems and structural electronics.

Design/methodology/approach

To explore the feasibility of processing copper via binder jetting, the authors followed an established material development process that encompasses powder selection and tuning process parameters in printing and thermal cycles. Specifically, the authors varied powder size and sintering cycles to explore their effects on densification.

Findings

Three differently sized copper powders were successfully printed, followed by sintering in a reducing atmosphere. It was found that a 15-μm-diameter powder with a sintering cycle featuring a 1,080°C maximum temperature provides the most dense (85 per cent) and pure (97 per cent) final copper parts of the parameters tested.

Research limitations/implications

Due to powder-based additive manufacturing techniques’ inherent limitations in powder packing and particle size diameter, there are difficulties in creating fully dense copper parts. To improve thermal, electrical and mechanical properties, future work will focus on improving densification.

Originality/value

The paper demonstrates the first use of binder jetting to fabricate copper artifacts. The resulting copper parts are denser than what is typically found in binder jetting of metal powders (without infiltration); significant opportunity remains to further optimize the manufacturing process by introducing novel techniques to tailor the material properties for thermal/electrical applications.

Details

Rapid Prototyping Journal, vol. 21 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 May 2023

Hasan Baş, Fatih Yapıcı and İbrahim İnanç

Binder jetting is one of the essential additive manufacturing methods because it is cost-effective, has no thermal stress problems and has a wide range of different materials…

Abstract

Purpose

Binder jetting is one of the essential additive manufacturing methods because it is cost-effective, has no thermal stress problems and has a wide range of different materials. Using binder jetting technology in the industry is becoming more common recently. However, it has disadvantages compared to traditional manufacturing methods regarding speed. This study aims to increase the manufacturing speed of binder jetting.

Design/methodology/approach

This study used adaptive slicing to increase the manufacturing speed of binder jetting. In addition, a variable binder amount algorithm has been developed to use adaptive slicing efficiently. Quarter-spherical shaped samples were manufactured using a variable binder amount algorithm and adaptive slicing method.

Findings

Samples were sintered at 1250°C for 2 h with 10°C/min heating and cooling ramp. Scanning electron microscope analysis, surface roughness tests, and density calculations were done. According to the results obtained from the analyzes, similar surface quality is achieved by using 38% fewer layers than uniform slicing.

Research limitations/implications

More work is needed to implement adaptive slicing to binder jetting. Because the software of commercial printers is very difficult to modify, an open-source printer was used. For this reason, it can be challenging to produce perfect samples. However, a good start has been made in this area.

Originality/value

To the best of the authors’ knowledge, the actual use of adaptive slicing in binder jetting was applied for the first time in this study. A variable binder amount algorithm has been developed to implement adaptive slicing in binder jetting.

Details

Rapid Prototyping Journal, vol. 29 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 January 2022

Tobia Romano, Emanuele Migliori, Marco Mariani, Nora Lecis and Maurizio Vedani

Binder jetting is a promising route to produce complex copper components for electronic/thermal applications. This paper aims to lay a framework for determining the effects of…

Abstract

Purpose

Binder jetting is a promising route to produce complex copper components for electronic/thermal applications. This paper aims to lay a framework for determining the effects of sintering parameters on the final microstructure of copper parts fabricated through binder jetting.

Design/methodology/approach

The knowledge gained from well-established powder metallurgy processes was leveraged to study the densification behaviour of a fine high-purity copper powder (D50 of 3.4 µm) processed via binder jetting, by performing dilatometry and microstructural characterization. The effects of sintering parameters on densification of samples obtained with a commercial water-based binder were also explored.

Findings

Sintering started at lower temperature in cold-pressed (∼680 °C) than in binder jetted parts (∼900 °C), because the strain energy introduced by powder compression reduces the sintering activation energy. Vacuum sintering promoted pore closure, resulting in greater and more uniform densification than sintering in argon, as argon pressure stabilizes the residual porosity. About 6.9% residual porosity was obtained with air sintering in the presence of graphite, promoting solid-state diffusion by copper oxide reduction.

Originality/value

This paper reports the first systematic characterization of the thermal events occurring during solid-state sintering of high-purity copper under different atmospheres. The results can be used to optimize the sintering parameters for the manufacturing of complex copper components through binder jetting.

Details

Rapid Prototyping Journal, vol. 28 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 January 2021

Ifeanyichukwu Donald Olumor, Lee Geuntak and Eugene Olevsky

The purpose of this study is to investigate the effect of two unique processing routes (solvent jetting (SJ) and binder jetting (BJ)), on the green density of printed stainless…

Abstract

Purpose

The purpose of this study is to investigate the effect of two unique processing routes (solvent jetting (SJ) and binder jetting (BJ)), on the green density of printed stainless steel 316L (SS316L) and Nickel (Ni) powders.

Design/methodology/approach

In the SJ processing route, a solvent is jetted unto the powder/binder mixture to selectively activate the binder, layer by layer. In the BJ processing route, a solution of the binder mixture is jetted onto the powder bed to selectively bind powder particles. The effects of printing parameters such as layer height, roller speed, shaker speed and nozzle temperature on the green density of printed components are investigated and compared for both processing routes.

Findings

Results show that layer height and nozzle temperature affect the relative density of the printed compact for both processing routes. Slightly higher relative densities were achieved via the SJ route, with the overall highest relative density being 42.7% at 100 µm layer height and 70% nozzle temperature for the SS316L components and 43.7% at 150 µm layer height and 90% nozzle temperature for the Ni components, respectively. Results also show an increase in the final sintered relative density with an increase in green (printed) relative density of the solvent jetted SS316L components, with the highest relative density being 87.2%.

Originality/value

The paper studies the influence of printing parameters on the green density of printed SS316L and Ni samples in an unprecedented effort to provide a comparative understanding of the process-property relationships in BJ and SJ of SS316L and Ni components to the additive manufacturing research community.

Details

Rapid Prototyping Journal, vol. 27 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 14 July 2021

Luca Giorleo and Michele Bonaventi

The purpose of present paper is to enlarge the knowledge about the performance of gypsum powder to realize complex molds or cores for aluminum casting.

1641

Abstract

Purpose

The purpose of present paper is to enlarge the knowledge about the performance of gypsum powder to realize complex molds or cores for aluminum casting.

Design/methodology/approach

The research was divided into two activities: simple; and complex-part production capability. In the simple-part step, the performance of gypsum powder and the minimum mold thickness that would withstand the casting process. In the complex-part step, the authors first investigated the powder removability as a function of geometry complexity and then binder jetting performance was evaluated for the case of lattice-structure fabrication.

Findings

All the geometries tested withstand the casting process demonstrating the benefits in terms of complexity part design; however, the process suffers of all the typical defect of casting as misrun, porosity and cold shut.

Originality/value

The results found in this research improve the benefits related to additive manufacturing application in industrial environment and in particular to the binder jetting technology and the rapid casting approach.

Details

Rapid Prototyping Journal, vol. 27 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 October 2018

Tugdual Amaury Le Néel, Pascal Mognol and Jean-Yves Hascoët

The purpose of this paper is to analyze the current state of the art manufacturing techniques using sand molds for the casting industry by the means of additive manufacturing…

1567

Abstract

Purpose

The purpose of this paper is to analyze the current state of the art manufacturing techniques using sand molds for the casting industry by the means of additive manufacturing (AM). In particular, this review will cover two families of 3D printing in regards to sand mold fabrication.

Design/methodology/approach

This paper will discuss the sand casting manufacturing processes of AM by binder jetting (3D printing) and selective laser sintering. Scientific articles, patents and case studies are analyzed. Topics ranging from the technology types to the economic implications are covered.

Findings

The review investigates new factors and methods for mold design, looking at mechanical properties and cost analysis as influenced by material selection, thermal characteristics, topological optimization and manufacturing procedure. Findings in this study suggest that this topic lacks vigorous scientific research and that the case studies by manufacturers thus far are not useful.

Research limitations/implications

As demonstrated by the limited data from previous published studies, a more comprehensive and conclusive analysis is needed due to the lack of interest and resources regarding the AM of sand molds.

Practical implications

This study is a useful tool for any researchers with an interest in the field of AM of sand molds.

Social implications

Key perspectives are proposed.

Originality/value

This review highlights current gaps in this field. The review goes beyond the scientific articles by curating patents and professional case studies.

Details

Rapid Prototyping Journal, vol. 24 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 3 April 2017

Julien Gardan

This paper aims to present a technical approach to evaluate the quality of textures obtained by an inkjet during binder jetting in 3D printing on a powder bed through contours…

Abstract

Purpose

This paper aims to present a technical approach to evaluate the quality of textures obtained by an inkjet during binder jetting in 3D printing on a powder bed through contours detection to improve the quality of the surface printed according to the result of the assembly between the inkjet and a granular product.

Design/methodology/approach

The manufacturing process is based on the use of computer-aided design and a 3D printer via binder jetting. Image processing measures the edge deviation of a texture on the granular surface with the possibility of implementing a correction in an active assembly through a “design for manufacturing” (DFM) approach. Example application is presented through first tests.

Findings

This approach observes a shape alteration of the printed image on a 3D printed product, and the work used the image processing method to improve the model according to the DFM approach.

Originality/value

This paper introduces a solution for improving the texture quality on 3D printed products realized via binder jetting. The DFM approach proposes an active assembly by compensating the print errors in upstream of a product life cycle.

Details

Assembly Automation, vol. 37 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 17 July 2023

Kazi Moshiur Rahman, Hadi Miyanaji and Christopher B. Williams

In binder jetting, the interaction between the liquid binder droplets and the powder particles defines the shape of the printed primitives. The purpose of this study is to explore…

Abstract

Purpose

In binder jetting, the interaction between the liquid binder droplets and the powder particles defines the shape of the printed primitives. The purpose of this study is to explore the interaction of the relative size of powder particles and binder droplets and the subsequent effects on macro-scale part properties.

Design/methodology/approach

The effects of different particle size distribution (5–25 µm and 15–45 µm) of stainless steel 316 L powders and droplet sizes (10 and 30 pL) on part density, shrinkage, mechanical strength, pore morphology and distribution are investigated. Experimental samples were fabricated in two different layer thicknesses (50 and 100 µm).

Findings

While 15–45 µm samples demonstrated higher green density (53.10 ± 0.25%) than 5–25 µm samples (50.31 ± 1.06%), higher sintered densities were achieved in 5–25 µm samples (70.60 ± 6.18%) compared to 15–45 µm samples (65.23 ± 3.24%). Samples of 5–25 µm also demonstrated superior ultimate tensile strength (94.66 ± 25.92 MPa) compared to 15–45 µm samples (39.34 ± 7.33 MPa). Droplet size effects were found to be negligible on both green and sintered densities; however, specimens printed with 10-pL droplets had higher ultimate tensile strength (79.70 ± 42.31 MPa) compared to those made from 30-pL droplets (54.29 ± 23.35 MPa).

Originality/value

To the best of the authors’ knowledge, this paper details the first report of the combined effects of different particle size distribution with different binder droplet sizes on the part macro-scale properties. The results can inform appropriate process parameters to achieve desired final part properties.

Details

Rapid Prototyping Journal, vol. 29 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 October 2018

Hadi Miyanaji, Niknam Momenzadeh and Li Yang

This study aims to experimentally investigate the effect of the powder material characteristics on the qualities of the binder jetting additive manufacturing parts both before and…

1231

Abstract

Purpose

This study aims to experimentally investigate the effect of the powder material characteristics on the qualities of the binder jetting additive manufacturing parts both before and after post processing (sintering).

Design methodology/approach

Three different types of the 316L stainless steel powder feedstock with various mean particle sizes and size distributions were studied. The influence of the powder particle size distributions and pore sizes on the powder bed packing densities and on the dynamics of the binder droplet-powder bed interactions were characterized. In addition, the surface roughness and densities of these parts both in the green state and after sintering were studied.

Findings

The results revealed the significant role of the powder feedstock characteristics on the liquid binder/powder bed interaction and consequently on the dimensional accuracies of the green parts. It was observed that the parts printed with the smaller mean particle sizes resulted in better surface finish and higher final densities after sintering. Furthermore, the hardness of the sintered parts produced with smaller powder particles exhibited higher values compared to the parts fabricated with the larger particles. On the other hand, larger particle sizes are advantageous for various green part qualities including the dimensional accuracies, green part densities and surface roughness.

Originality/value

This study establishes more comprehensive correlations between the powder feedstock characteristics and various quality criteria of the printed binder jetting components in both green and sintered states. These correlation are of critical importance in choosing the optimal process parameters for a given material system.

Details

Rapid Prototyping Journal, vol. 25 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 April 2023

Asif Ur Rehman, Kashif Azher, Abid Ullah, Celal Sami Tüfekci and Metin Uymaz Salamci

This study aims to describe the effects of capillary forces or action, viscosity, gravity and inertia via the computational fluid dynamics (CFD) analysis. The study also includes…

263

Abstract

Purpose

This study aims to describe the effects of capillary forces or action, viscosity, gravity and inertia via the computational fluid dynamics (CFD) analysis. The study also includes distribution of the binder droplet over the powder bed after interacting from different heights.

Design/methodology/approach

Additive manufacturing (AM) has revolutionized many industries. Binder jetting (BJT) is a powder-based AM method that enables the production of complex components for a wide range of applications. The pre-densification interaction of binder and powder is vital among various parameters that can affect the BJT performance. In this study, BJT process is studied for the binder interaction with the powder bed of SS316L. The effect of the droplet-powder distance is thoroughly analysed. Two different droplet heights are considered, namely, h1 (zero) and h2 (9.89 mm).

Findings

The capillary and inertial effects are predominant, as the distance affects these parameters significantly. The binder spreading and penetration depth onto the powder bed is influenced directly by the distance of the binder droplet. The former increases with an increase in latter. The binder distribution over the powder bed, whether uniform or not, is studied by the stream traces. The penetration depth of the binder was also observed along the cross-section of the powder bed through the same.

Originality/value

In this work, the authors have developed a more accurate representative discrete element method of the powder bed and CFD analysis of binder droplet spreading and penetration inside the powder bed using Flow-3D. Moreover, the importance of the splashing due to the binder’s droplet height is observed. If splashing occurs, it will produce distortion in the powder, resulting in a void in the final part.

Details

Rapid Prototyping Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 583