Search results

1 – 10 of 23
Article
Publication date: 27 December 2022

Satya Prakash and Indrajit Mukherjee

This study primarily aims to develop and solve an enhanced optimisation model for an assembly product multi-period inbound inventory routing problem (IRP). The many-to-one…

Abstract

Purpose

This study primarily aims to develop and solve an enhanced optimisation model for an assembly product multi-period inbound inventory routing problem (IRP). The many-to-one (inbound) model considers the bill of materials (BOM), supply failure risks (SFR) and customer demand uncertainty. The secondary objective is to study the influence of potential time-dependent model variables on the overall supply network costs based on a full factorial design of experiments (DOE).

Design/methodology/approach

A five-step solution approach is proposed to derive the optimal inventory levels, best sourcing strategy and vehicle route plans for a multi-period discrete manufacturing product assembly IRP. The proposed approach considers an optimal risk mitigation strategy by considering less risk-prone suppliers to deliver the required components in a specific period. A mixed-integer linear programming formulation was solved to derive the optimal supply network costs.

Findings

The simulation results indicate that lower demand variation, lower component price and higher supply capacity can provide superior cost performance for an inbound supply network. The results also demonstrate that increasing supply capacity does not necessarily decrease product shortages. However, when demand variation is high, product shortages are reduced at the expense of the supply network cost.

Research limitations/implications

A two-echelon supply network for a single assembled discrete product with homogeneous vehicle fleet availability was considered in this study.

Originality/value

The proposed multi-period inbound IRP model considers realistic SFR, customer demand uncertainties and product assembly requirements based on a specific BOM. The mathematical model includes various practical aspects, such as supply capacity constraints, supplier management costs and target service-level requirements. A sensitivity analysis based on a full factorial DOE provides new insights that can aid practitioners in real-life decision-making.

Details

Journal of Modelling in Management, vol. 18 no. 6
Type: Research Article
ISSN: 1746-5664

Keywords

Open Access
Article
Publication date: 25 December 2023

Anna Trubetskaya, Alan Ryan, Daryl John Powell and Connor Moore

Output from the Irish Dairy Industry has grown rapidly since the abolition of quotas in 2015, with processors investing heavily in capacity expansion to deal with the extra milk…

Abstract

Purpose

Output from the Irish Dairy Industry has grown rapidly since the abolition of quotas in 2015, with processors investing heavily in capacity expansion to deal with the extra milk volumes. Further capacity gains may be achieved by extending the processing season into the winter, a key enabler for which being the reduction of duration of the winter maintenance overhaul period. This paper aims to investigate if Lean Six Sigma tools and techniques can be used to enhance operational maintenance performance, thereby releasing additional processing capacity.

Design/methodology/approach

Combining the Six-Sigma Define, Measure, Analyse, Improve, Control (DMAIC) methodology and the structured approach of Turnaround Maintenance (TAM) widely used in process industries creates a novel hybrid model that promises substantial improvement in maintenance overhaul execution. This paper presents a case study applying the DMAIC/TAM model to Ireland’s largest dairy processing site to optimise the annual maintenance shutdown. The objective was to deliver a 30% reduction in the duration of the overhaul, enabling an extension of the processing season.

Findings

Application of the DMAIC/TAM hybrid resulted in process enhancements, employee engagement and a clear roadmap for the operations team. Project goals were delivered, and original objectives exceeded, resulting in €8.9m additional value to the business and a reduction of 36% in the duration of the overhaul.

Practical implications

The results demonstrate that the model provides a structure that promotes systematic working and a continuous improvement focus that can have substantial benefits for wider industry. Opportunities for further model refinement were identified and will enhance performance in subsequent overhauls.

Originality/value

To the best of the authors’ knowledge, this is the first time that the structure and tools of DMAIC and TAM have been combined into a hybrid methodology and applied in an Irish industrial setting.

Details

International Journal of Lean Six Sigma, vol. 15 no. 8
Type: Research Article
ISSN: 2040-4166

Keywords

Open Access
Article
Publication date: 22 February 2022

Solmaz Mansoori, Janne Harkonen and Harri Haapasalo

This study aims to facilitate consistency of information in building information modelling (BIM) and address the current BIM gaps through the perspectives of the productization…

2245

Abstract

Purpose

This study aims to facilitate consistency of information in building information modelling (BIM) and address the current BIM gaps through the perspectives of the productization concept and product structure (PS).

Design/methodology/approach

The study follows a conceptual research approach in conjunction with a single case study. First, the previous studies on BIM implementation, productization and PS are reviewed. Further, a case study is used to analyse the current state of productization in the construction sector and develop a functional PS for construction.

Findings

A Part-Phase-Elements Matrix is proposed as a construction-specific PS to facilitate consistency in information and to enhance BIM. The proposed matrix provides new avenues to facilitate consistent information exchange through the interconnection between conceptual PS and standard building objects library, and encourage collaborative communication between stakeholders.

Originality/value

This study explores the core of the productization concept and PS as means to facilitate consistency of information and thus address the current gaps in BIM. This as building projects progressively move towards systematic modular and prefabricated construction where the flow of reliable information about product and construction offerings becomes increasingly important.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 5
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 19 June 2023

Yaping Zhao, Hao Luo, Qingyue Chen and Xiaoyun Xu

The increasing popularity of ERP solutions has provided dietary supplement manufacturing companies with modules to manage pricing and inventory. However, the decisions made by…

Abstract

Purpose

The increasing popularity of ERP solutions has provided dietary supplement manufacturing companies with modules to manage pricing and inventory. However, the decisions made by these modules are often independent and rely on deterministic forecasts. This paper studies a multi-product dietary supplement manufacturing system under stochastic demands. The purpose is to maximize the long-run expected profit by jointly considering pricing and inventory strategies.

Design/methodology/approach

The authors investigate both the general cases and three special cases including stable demand, negligible backlog and instantaneous replenishment. A two-stage algorithm named PAS is proposed. In the strategy construction stage, the constructed objective bounds are combined to provide estimates which then help to derive the optimal product prices. In the system operation stage, replenishment decisions are further made based on the prices generated from the previous stage.

Findings

It is proved that base-stock policy is optimal for the studied system, and the optimal based-stock level is provided. The global optimal strategies are obtained for three important special cases. For the general case, theoretical objective bounds are established. These bounds provide quick and reliable performance estimates for practical applications.

Originality/value

Very few studies have jointly considered pricing and inventory strategies with uncertainty demands in the dietary supplement industry. The PAS algorithm developed integrates these decisions and consistently generates high-quality solutions even under highly varying demands. Such algorithm could be a valuable add-on to the pricing and inventory management modules in ERP systems.

Details

Industrial Management & Data Systems, vol. 123 no. 8
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 19 March 2024

John Maleyeff and Jingran Xu

The article addresses the optimization of safety stock service levels for parts in a repair kit. The work was undertaken to assist a public transit entity that stores thousands of…

Abstract

Purpose

The article addresses the optimization of safety stock service levels for parts in a repair kit. The work was undertaken to assist a public transit entity that stores thousands of parts used to repair equipment acquired over many decades. Demand is intermittent, procurement lead times are long, and the total inventory investment is significant.

Design/methodology/approach

Demand exists for repair kits, and a repair cannot start until all required parts are available. The cost model includes holding cost to carry the part being modeled as well as shortage cost that consists of the holding cost to carry all other repair kit parts for the duration of the part’s lead time. The model combines deterministic and stochastic approaches by assuming a fixed ordering cycle with Poisson demand.

Findings

The results show that optimal service levels vary as a function of repair demand rate, part lead time, and cost of the part as a percentage of the total part cost for the repair kit. Optimal service levels are higher for inexpensive parts and lower for expensive parts, although the precise levels are impacted by repair demand and part lead time.

Social implications

The proposed model can impact society by improving the operational performance and efficiency of public transit systems, by ensuring that home repair technicians will be prepared for repair tasks, and by reducing the environmental impact of electronic waste consistent with the right-to-repair movement.

Originality/value

The optimization model is unique because (1) it quantifies shortage cost as the cost of unnecessary holding other parts in the repair kit during the shortage time, and (2) it determines a unique service level for each part in a repair kit bases on its lead time, its unit cost, and the total cost of all parts in the repair kit. Results will be counter-intuitive for many inventory managers who would assume that more critical parts should have higher service levels.

Details

Journal of Quality in Maintenance Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 7 November 2023

Zhu Wang, Hongtao Hu and Tianyu Liu

Driven by sustainable production, mobile robots are introduced as a new clean-energy material handling tool for mixed-model assembly lines (MMALs), which reduces energy…

Abstract

Purpose

Driven by sustainable production, mobile robots are introduced as a new clean-energy material handling tool for mixed-model assembly lines (MMALs), which reduces energy consumption and lineside inventory of workstations (LSI). Nevertheless, the previous part feeding scheduling method was designed for conventional material handling tools without considering the flexible spatial layout of the robotic mobile fulfillment system (RMFS). To fill this gap, this paper focuses on a greening mobile robot part feeding scheduling problem with Just-In-Time (JIT) considerations, where the layout and number of pods can be adjusted.

Design/methodology/approach

A novel hybrid-load pod (HL-pod) and mobile robot are proposed to carry out part feeding tasks between material supermarkets and assembly lines. A bi-objective mixed-integer programming model is formulated to minimize both total energy consumption and LSI, aligning with environmental and sustainable JIT goals. Due to the NP-hard nature of the proposed problem, a chaotic differential evolution algorithm for multi-objective optimization based on iterated local search (CDEMIL) algorithm is presented. The effectiveness of the proposed algorithm is verified by dealing with the HL-pod-based greening part feeding scheduling problem in different problem scales and compared to two benchmark algorithms. Managerial insights analyses are conducted to implement the HL-pod strategy.

Findings

The CDEMIL algorithm's ability to produce Pareto fronts for different problem scales confirms its effectiveness and feasibility. Computational results show that the proposed algorithm outperforms the other two compared algorithms regarding solution quality and convergence speed. Additionally, the results indicate that the HL-pod performs better than adopting a single type of pod.

Originality/value

This study proposes an innovative solution to the scheduling problem for efficient JIT part feeding using RMFS and HL-pods in automobile MMALs. It considers both the layout and number of pods, ensuring a sustainable and environmental-friendly approach to production.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 March 2023

Rouhollah Khakpour, Ahmad Ebrahimi and Soroosh Saghiri

This paper aims to propose a stepwise method to improve the sustainability of manufacturing processes.

Abstract

Purpose

This paper aims to propose a stepwise method to improve the sustainability of manufacturing processes.

Design/methodology/approach

The proposed approach is based on an extensive literature review and research around the environmental, economic and social pillars of sustainability in manufacturing firms. Considering the lean approach, the manufacturing processes are mapped in a value stream and analyzed through the extensive identified sustainability criteria.

Findings

The findings reveal the consumption and waste of natural and nonrenewable resources, through going beyond the existing boundaries and focusing on relevant derived production pieces and tracing to their origins. The findings also present the effect of the time value of money on sustainability by using the cost–time profile as a sustainability criterion. This research finds out the employees’ impacts on sustainability improvement through an effective focus on technical, cultural and personal aspects.

Practical implications

The research outcomes provide operations managers and decision-makers in the field of sustainability with a practical platform to comprehend and assess the factors contributing to the manufacturing process sustainability and to plan relevant corrective actions accordingly.

Originality/value

The extended view of sustainability criteria in this research as well as its visual-analytical approach will help practitioners to assess and improve sustainability in their operations in a more holistic way.

Details

International Journal of Lean Six Sigma, vol. 14 no. 7
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 12 December 2022

Mohit Goswami, M. Ramkumar and Yash Daultani

This research aims to aid product development managers to estimate the expected cost associated with the development of cost-intensive physical prototypes considering transitions…

Abstract

Purpose

This research aims to aid product development managers to estimate the expected cost associated with the development of cost-intensive physical prototypes considering transitions associated with pertinent states of quality of the prototype and corresponding decision policies under the Markovian setting.

Design/methodology/approach

The authors evolve two types of optimization-based mathematical models under both deterministic and randomized policies. Under the deterministic policy, the product development managers take certain decisions such as “Do nothing,” “Overhaul,” or “Replace” corresponding to different quality states of prototype such as “Good as new,” “Functional with minor deterioration,” “Functional with major deterioration” and “Non-functional.” Under the randomized policy, the product development managers ascertain the probability distribution associated with these decisions corresponding to various states of quality. In both types of mathematical models, i.e. related to deterministic and randomized settings, minimization of the expected cost of the prototype remains the objective function.

Findings

Employing an illustrative case of the operator cabin from the construction equipment domain, the authors ascertain that randomized policy provides us with better decision interventions such that the expected cost of the prototype remains lower than that associated with the deterministic policy. The authors also ascertain the steady-state probabilities associated with a prototype remaining in a particular quality state. These findings have implications for product development budget, time to market, product quality, etc.

Originality/value

The authors’ work contributes toward the development of optimization-driven mathematical models that can encapsulate the nuances related to the uncertainty of transition of quality states of a prototype, decision policies at each quality state of the prototype while considering such facets for all constituent subsystems of the prototype. As opposed to a typical prescriptive study, their study captures the inherent uncertainties associated with states of quality in the context of prototype testing, etc.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 7
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 1 June 2022

Vivian W.Y. Tam, Lei Liu and Khoa N. Le

This paper proposes an intact framework for building life cycle energy estimation (LCEE), which includes three major energy sources: embodied, operational and mobile.

Abstract

Purpose

This paper proposes an intact framework for building life cycle energy estimation (LCEE), which includes three major energy sources: embodied, operational and mobile.

Design/methodology/approach

A systematic review is conducted to summarize the selected 109 studies published during 2012–2021 related to quantifying building energy consumption and its major estimation methodologies, tools and key influence parameters of three energy sources.

Findings

Results show that the method limitations and the variety of potential parameters lead to significant energy estimation errors. An in-depth qualitative discussion is conducted to identify research knowledge gaps and future directions.

Originality/value

With societies and economies developing rapidly across the world, a large amount of energy is consumed at an alarming rate. Unfortunately, its huge environmental impacts have forced many countries to take energy issues as urgent social problems to be solved. Even though the construction industry, as the one of most important carbon contributors, has been constantly and academically active, researchers still have not arrived at a clear consensus for system boundaries of life cycle energy. Besides, there is a significant difference between the actual and estimated values in countless current and advanced energy estimation approaches in the literature.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 3 July 2023

M. Boyault Edouard, Jean Camille, Bernier Vincent and Aoussat Améziane

This paper aims to fulfil a need to identify assembly interfaces from existing products based on their Assembly Process Planning (APP). It proposes a tool to identify assembly…

Abstract

Purpose

This paper aims to fulfil a need to identify assembly interfaces from existing products based on their Assembly Process Planning (APP). It proposes a tool to identify assembly interfaces responsible for reused components integration. It is integrated into a design for mixed model final assembly line approach by focusing on the identification of assembly interfaces as a generic tool. It aims to answer the problem of interfaces’ identification from the APP.

Design/methodology/approach

A tool is developed to identify assembly interfaces responsible for reused component integration. It is based on the use of a rule-based algorithm that analyses an APP and then submits the results to prohibition lists to check their relevance. The tool is then tested using a case study. Finally, the resulting list is subjected to a visual validation step to validate whether the identified interface is a real interface.

Findings

The results of this study are a tool named ICARRE which identify assembly interfaces using three steps. The tool has been validated by a case study from the helicopter industry.

Research limitations/implications

As some interfaces are not contained in the same assembly operations and therefore, may not have been identified by the rule-based algorithm. More research should be done by testing and improving the algorithm with other case studies.

Practical implications

The paper includes implications for new product development teams to address the difficulties of integrating reused components into different products.

Originality/value

This paper presents a tool for identifying interfaces when sources of knowledge do not allow the use of current methods.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 10 of 23