Search results

1 – 7 of 7
Article
Publication date: 1 July 2022

Xin Kuang, Bifeng Yin, Jian Wang, Hekun Jia and Bo Xu

The purpose of this paper is to evaluate the dispersion stability and the wear properties of lubricating oil blends added with modified nanometer cerium oxide (CeO2) at high…

Abstract

Purpose

The purpose of this paper is to evaluate the dispersion stability and the wear properties of lubricating oil blends added with modified nanometer cerium oxide (CeO2) at high temperature.

Design/methodology/approach

In this paper, CeO2 was self-made and it was chemically modified. The dispersion stability of CeO2 in lubricating oil was studied. And the wear test of lubricating oil blends added with modified CeO2 was carried out at high temperature.

Findings

The results showed that CeO2 was successfully modified by oleic acid and stearic acid. The dispersion stability of modified CeO2 in lubricating oil was improved. Adding modified nano-CeO2 with the concentration less than 50 ppm into the lubricating oil can improve the wear properties of friction pairs in different extent. With the increase of the amount of CeO2, the wear properties increased first and then decreased. The lubricating oil blend added with 25 ppm CeO2 has the best wear properties.

Originality/value

The raw material CeO2 in this paper is self-made and its shape and size are well controlled. Research on the addition of nano-CeO2 to the engine low viscosity finished lubricants is lacking. It is of great significance to study the dispersion stability and tribological properties of nano-lubricants under the new background of low viscosity of lubricating oil and close to the real engine working conditions. It has certain significance to promote the development of nano-lubricants for engines.

Details

Industrial Lubrication and Tribology, vol. 74 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 December 2018

Bifeng Yin, Huiqin Zhou, Bo Xu and Hekun Jia

The purpose of this paper is to investigate the coupling mechanism of the roughness distribution characteristic and surface textures on the cylinder liner.

Abstract

Purpose

The purpose of this paper is to investigate the coupling mechanism of the roughness distribution characteristic and surface textures on the cylinder liner.

Design/methodology/approach

The cylinder liner-piston ring lubrication model with non-Gaussian roughness distribution surface was proposed in this paper to find the optimum cylinder liner surface. The motored engine tests were carried out to verify the simulation results.

Findings

The calculation and experiment results show that the large negative skewness surface has the optimal lubrication performance in the un-textured liner, while in the textured liner, the small negative skewness surface is more appropriate, which means surface textures couple with small negative skewness surface can improve the lubrication performance.

Originality/value

Although there are some works related to liner surface roughness and textures, the combine of roughness distribution and surface textures is not usually taken into account. Therefore, this research is different from others, as the present model considers with real non-Gaussian roughness distribution liners.

Details

Industrial Lubrication and Tribology, vol. 71 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 April 2021

Hekun Jia, Zeyuan Zhou, Bifeng Yin, Huiqin Zhou and Bo Xu

The purpose of this study is to investigate the influence of dimple radius, depth and density on the lubrication performance of the plunger.

315

Abstract

Purpose

The purpose of this study is to investigate the influence of dimple radius, depth and density on the lubrication performance of the plunger.

Design/methodology/approach

A lubrication model was adopted to consider eccentricity and deformation during the working process of the plunger, and a rig test was performed to confirm the simulation results. The texture was fabricated using laser surface texturing.

Findings

The simulation results suggested that when dimple radius or depth increases, oil film thickness of the plunger increases before decreasing, and asperity friction displays an opposite trend. Therefore, appropriate microdimple texture could facilitate lubrication performance improvement and reduce the wear. Microdimples were then lased on the plunger surface, and a basic tribological test was conducted to validate the simulation results. The experimental results suggested that the average friction coefficient decreased from 0.18 to 0.13, a reduction of 27.8%.

Social implications

The introduction of microdimple on a plunger couple to reduce friction and improve lubrication is expected to provide a new approach to developing high-performance plunger couple and improve the performance of the internal combustion engine. If applied, the surface texture could help reduce friction by around 27% and cap the cost relative to the plugger friction.

Originality/value

The microdimple texture was introduced into the plunger couple of a vehicle to reduce the friction and improve the performance. Findings suggested that surface texture could be used in the automotive industry to improve oil efficiency and lubrication performance.

Peer review

The peer review history for this article is available at: http://dx.doi.org/10.1108/ILT-07-2020-0259.

Details

Industrial Lubrication and Tribology, vol. 73 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 August 2021

Bifeng Yin, Xuefeng Wang, Bo Xu, Gongyin Huang and Xin Kuang

The purpose of this paper was to improve the frictional wear resistance properties of piston skirts caused by the low viscosity lubricant by studying the tribological performance…

Abstract

Purpose

The purpose of this paper was to improve the frictional wear resistance properties of piston skirts caused by the low viscosity lubricant by studying the tribological performance of three novel coating materials.

Design/methodology/approach

Comparative tribological examinations were performed in a tribological tester using the ring-block arrangement under two viscosity lubricants, the loading force was applied as 100 N, the speed was set to 60 r/min and the testing time was 180 min.

Findings

Under low viscosity lubricant, the friction coefficient and wear of the three coatings all increase, and the friction coefficient and wear of the PTFE coating are the largest, while the MoS2 coating has the lowest friction coefficient and wear. Under low viscosity lubricant, the friction coefficient of the MoS2 coating is 2.1%–5.4% and 20.0%–24.3% lower than that of the SiO2 and PTFE coating, respectively. The friction coefficient and wear fluctuation rate of the MoS2 coating is the smallest when the lubricant viscosity decreases, which indicates that the MoS2 coating has excellent stability and adaptability under low viscosity lubricant.

Originality/value

To reduce the piston skirt wear caused by low viscosity lubricant in heavy-duty diesel engines, the friction and wear adaptability of three novel composite coating materials for piston skirts were compared under 0 W-20 low viscosity lubricant, which could provide a guidance for the application of wear-resistant materials for heavy-duty diesel engine piston skirt.

Details

Industrial Lubrication and Tribology, vol. 73 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 March 2018

Xijun Hua, Xuan Xie, Bifeng Yin, Peiyun Zhang, Jinghu Ji, Hao Wang and Yonghong Fu

This paper aims to find out the tribological performance and self-lubricating mechanism of the laser-textured surface filled with solid lubricant in rolling friction pair.

Abstract

Purpose

This paper aims to find out the tribological performance and self-lubricating mechanism of the laser-textured surface filled with solid lubricant in rolling friction pair.

Design/methodology/approach

The textures on the surfaces of GCr15 bearing steel were produced by acousto-optic Q diode-pumped yttrium aluminum garnet laser with the technology of “single pulse one time, repeating at intervals” and filled with composite solid lubricant. The tribology tests were conducted on the MMW-1A universal friction and wear testing machine.

Findings

It was found that the solid-lubricated micro-textured surface can reduce the friction coefficient effectively. The MoS2/PI composite solid lubricant works better than the single MoS2 solid lubricant, and the ratio of PI/MoS2 + PI at 20 per cent is the best recipe. The friction coefficient of the sample surfaces decreases first and then increases with the increase in texture densities, and a texture density of 19.6 per cent has the best effect on friction reduction. The friction coefficient of the textured surfaces gradually decreases with the increase in both rational speed and load. For the same texture density, the friction coefficient of textured surfaces decreases slightly with the increase in diameter. Furthermore, the mechanism of “rolling-extrusion-accumulation” occurred on the textured surface can collect the solid lubricant, thereby, improve the effect of lubricating and anti-friction.

Originality/value

The results of the experimental studies demonstrated the application prospect of laser surfaces texturing combined with solid lubricant in rolling friction pair.

Article
Publication date: 2 June 2022

Zeyuan Zhou, Hekun Jia and Bifeng Yin

This paper aims to present a 3D static performance analysis model for the gas foil journal bearing to provide better understanding of the gas foil journal bearing and extend the…

Abstract

Purpose

This paper aims to present a 3D static performance analysis model for the gas foil journal bearing to provide better understanding of the gas foil journal bearing and extend the development of the calculation about the static performance.

Design/methodology/approach

The foil bearing can be seen as a shell structure, and the mixed interpolation of tensorial components (MITC) element was used to build the shell model. The augmented Lagrange method was used to calculate the contact involving friction between foils and between the foil and the bearing sleeve. A displacement-controlled load scheme was used to calculate the deformation of the foils. A mapping operator was used to map the film pressure from the gas to the surface of the top foil.

Findings

This method provides high precision of calculation in the prediction of the static performance. The calculation results were compared with the experimental data, and they show good agreement. Meanwhile, the model can be applied in the prediction of the bearing performance in a broad range of working conditions.

Originality/value

This method extends the calculation of the gas foil journal bearing to a 3D scale and shows good agreement with the experimental data. Meanwhile, the present model has a good adaptability on the revolution speed and can be applied to the predictions in varied working conditions.

Details

Industrial Lubrication and Tribology, vol. 74 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 April 2015

Anastasios Zavos and Pantelis George Nikolakopoulos

The purpose of this paper is to review and to provide a dipper understanding of what happens to piston rings and cylinder surfaces when manufacturing errors depicted, such as…

Abstract

Purpose

The purpose of this paper is to review and to provide a dipper understanding of what happens to piston rings and cylinder surfaces when manufacturing errors depicted, such as waviness and straightness. The mechanism of friction and the piston ring structural integrity, due to the surface irregularities, are analyzed either for smooth ring surface or for artificial textured, while piston ring floats into the piston groove or not.

Design/methodology/approach

In this work two tribological models of a piston ring- cylinder package are presented using CFD analysis. Initially, the piston ring is considered as a secured ring in the groove of piston (secured ring) while in second model, the piston ring floats into the piston groove (free ring).

Findings

Increasing the number of waves across the piston ring thickness, the structural integrity of the ring is strongly influenced. Piston ring with surface texturing reduces the mean friction force, under the consideration of cylinder straightness. The gas leaks due to existence of the ring gap, affects significantly the maximum mechanical stresses.

Originality/value

The novelty of this paper is the analysis of manufacturing errors, such as waviness and straightness either for smooth or for artificial textured piston ring. In particular, the piston ring structural integrity investigated while chamber gas pressure leaks through the ring gap or not. The number of the waves, their amplitude and the fluid velocity are also taken into consideration.

Details

International Journal of Structural Integrity, vol. 6 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Access

Year

Content type

Article (7)
1 – 7 of 7