Search results

1 – 3 of 3
To view the access options for this content please click here
Article
Publication date: 7 January 2021

Wang Jianhong and Wang Yanxiang

The purpose of this paper is to deal with the anomaly detection problem in multi-unmanned aerial vehicles (UAVs) formation that can be transformed to identify some unknown…

Abstract

Purpose

The purpose of this paper is to deal with the anomaly detection problem in multi-unmanned aerial vehicles (UAVs) formation that can be transformed to identify some unknown parameters; a more general nonlinear dynamical model for each UAV is considered to include two terms. Due to an unknown parameter corresponding to the normal or abnormal state for each UAV, the bias-compensated approach is proposed to obtain the unbiased parameter estimation. Meanwhile, the biased error and accuracy analysis are also given in case of strict statistical description of the uncertainty or white noise. To relax this strict statistical description on external noise, an analytic center approach is proposed to identify the unknown parameters in presence of bounded noise, such that two inner and outer ellipsoidal approximations are constructed to include the membership set. To be precise, this paper is regarded as one extension and summary for the author’s previous research on the anomaly detection in multi-UAV formation. Finally, one simulation example is given to confirm the theoretical results.

Design/methodology/approach

Firstly, one extended nonlinear relation is constructed to embody the mutual relationship of UAVs. Secondly, to obtain the unbiased parameter estimations, the bias-compensated approach is applied to achieve it under the condition of white noise. Thirdly, in case of unknown but bounded noise, an analytic center approach is proposed to deal with this special case. Without loss of generality, the author thinks this paper can be used as one extension and summary for research on multi-UAVs formation anomaly detection.

Findings

An anomaly detection problem in multi-UAVs formation can be transformed into a problem of nonlinear system identification, and in modeling the nonlinear dynamical model for each UAV, two terms are considered simultaneously to embody the mutual relationships with other nearest UAV.

Originality/value

To the best knowledge of the authors, this problem of the anomaly detection problem in multi-UAVs formation is proposed by the authors’ previous work, and the problem of multi-UAVs formation anomaly detection can be transferred into one problem of parameter identification. In case of unknown but bounded noise, an analytic center approach is proposed to identify the unknown parameters, which correspond to achieve the goal of the anomaly detection.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article
Publication date: 11 June 2018

Wang Jian Hong and Daobo Wang

The purpose of this paper is to probe the recursive identification of piecewise affine Hammerstein models directly by using input-output data. To explain the…

Abstract

Purpose

The purpose of this paper is to probe the recursive identification of piecewise affine Hammerstein models directly by using input-output data. To explain the identification process of a parametric piecewise affine nonlinear function, the authors prove that the inverse function corresponding to the given piecewise affine nonlinear function is also an equivalent piecewise affine form. Based on this equivalent property, during the detailed identification process with respect to piecewise affine function and linear dynamical system, three recursive least squares methods are proposed to identify those unknown parameters under the probabilistic description or bounded property of noise.

Design/methodology/approach

First, the basic recursive least squares method is used to identify those unknown parameters under the probabilistic description of noise. Second, multi-innovation recursive least squares method is proposed to improve the efficiency lacked in basic recursive least squares method. Third, to relax the strict probabilistic description on noise, the authors provide a projection algorithm with a dead zone in the presence of bounded noise and analyze its two properties.

Findings

Based on complex mathematical derivation, the inverse function of a given piecewise affine nonlinear function is also an equivalent piecewise affine form. As the least squares method is suited under one condition that the considered noise may be a zero mean random signal, a projection algorithm with a dead zone in the presence of bounded noise can enhance the robustness in the parameter update equation.

Originality/value

To the best knowledge of the authors, this is the first attempt at identifying piecewise affine Hammerstein models, which combine a piecewise affine function and a linear dynamical system. In the presence of bounded noise, the modified recursive least squares methods are efficient in identifying two kinds of unknown parameters, so that the common set membership method can be replaced by the proposed methods.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 11 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

To view the access options for this content please click here
Article
Publication date: 1 June 2021

Wang Jianhong

The purpose of this paper considers optimal input signal design for flutter model parameters identification, as input signal is the first step during the whole…

Abstract

Purpose

The purpose of this paper considers optimal input signal design for flutter model parameters identification, as input signal is the first step during the whole identification process. According to the constructed flutter stochastic model with observed noises, separable least squares identification and set membership identification are proposed to identify those unknown model parameters for statistical noise and unknown but bounded noise, respectively. The common trace operation with respect to the asymptotic variance matrix is minimized to solve the power spectral for the optimal input signal in the framework of statistical noise. Moreover, for the unknown bout bounded noise, the radius of information, corresponding to the established parameter uncertainty interval, is minimized to give the optimal input signal.

Design/methodology/approach

First, model identification for aircraft flutter is reviewed as one problem of parameter identification and this aircraft flutter model corresponds to one stochastic model, whose input signal and output are corrupted by external noises. Second, for aircraft flutter statistical model with statistical noise, separable least squares identification is proposed to identify the unknown model parameters, then the optimal input signal is designed to satisfy one given performance function. Third, for aircraft flutter model with unknown but bounded noise, set membership identification is proposed to solve the parameter set for each unknown model parameter. Then, the optimal input signal is designed by applying the idea of the radius of information with unknown but bounded noise.

Findings

This aircraft flutter model corresponds to one stochastic model, whose input signal and output are corrupted by external noises. Then identification strategy and optimal input signal design are studied for aircraft flutter model parameter identification with statistical noise and unknown but bounded noise, respectively.

Originality/value

To the best knowledge of the authors, this problem of the model parameter identification for aircraft flutter was proposed by their previous work, and they proposed many identification strategies to identify these model parameters. This paper proposes two novel identification strategies and opens a new subject about optimal input signal design for statistical noise and unknown noise, respectively.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 3 of 3