Search results

1 – 10 of 43
Article
Publication date: 5 July 2021

Abhishek Kumar Singh and Krishna Mohan Singh

The work presents a novel implementation of the generalized minimum residual (GMRES) solver in conjunction with the interpolating meshless local Petrov–Galerkin (MLPG) method to…

Abstract

Purpose

The work presents a novel implementation of the generalized minimum residual (GMRES) solver in conjunction with the interpolating meshless local Petrov–Galerkin (MLPG) method to solve steady-state heat conduction in 2-D as well as in 3-D domains.

Design/methodology/approach

The restarted version of the GMRES solver (with and without preconditioner) is applied to solve an asymmetric system of equations, arising due to the interpolating MLPG formulation. Its performance is compared with the biconjugate gradient stabilized (BiCGSTAB) solver on the basis of computation time and convergence behaviour. Jacobi and successive over-relaxation (SOR) methods are used as the preconditioners in both the solvers.

Findings

The results show that the GMRES solver outperforms the BiCGSTAB solver in terms of smoothness of convergence behaviour, while performs slightly better than the BiCGSTAB method in terms of Central processing Unit (CPU) time.

Originality/value

MLPG formulation leads to a non-symmetric system of algebraic equations. Iterative methods such as GMRES and BiCGSTAB methods are required for its solution for large-scale problems. This work presents the use of GMRES solver with the MLPG method for the very first time.

Details

Engineering Computations, vol. 39 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 October 2019

Makoto Kumagai, Shimpei Kakita and Yoshifumi Okamoto

This paper aims to present the affinity of BiCGStab and BiCGStab2 with successive over-relaxation (SOR) preconditioner supported by Eisenstat’s technique for a linear system…

Abstract

Purpose

This paper aims to present the affinity of BiCGStab and BiCGStab2 with successive over-relaxation (SOR) preconditioner supported by Eisenstat’s technique for a linear system derived from the time-periodic finite element method (TP-FEM). To solve the time domain electromagnetic field problem with long transient state, TP-FEM is very useful from the perspective of rapidly achieving a steady state. Because TP-FEM solves all of the state variables at once, the linear system derived from TP-FEM becomes the large scale and nonsymmetric, whereas the detailed performance of some preconditioned Krylov subspace method is not reported.

Design/methodology/approach

In this paper, BiCGStab and BiCGStab2 are used as the linear solver for a large-sparse nonsymmetric linear system derived from TP-FEM. In addition, incomplete LU (ILU) factorization is applied as a preconditioner to compare SOR supported by Eisenstat’s technique. As examples, the pot-type reactor and three-phase transformer is analyzed.

Findings

In the problem of the pot-type reactor, when SOR preconditioner supported by Eisenstat’s technique is applied to BiCGStab and BiCGStab2, the elapsed time can be reduced dramatically. However, in the problem of the three-phase transformer, the iterative process of the linear solvers with SOR preconditioner is not terminated, whereas the iterative process of linear solvers with ILU preconditioner is terminated. The preconditioner that can be supported by Eisenstat’s technique is not necessarily appropriate for the problem to derive from TP-FEM.

Originality/value

In this paper, the affinity of preconditioned linear solver supported by Eisenstat’s technique for the nonsymmetric linear system derived from TP-FEM is demonstrated.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 May 2015

Guangtao Duan and Bin Chen

The purpose of this paper is to find the best solver for parallelizing particle methods based on solving Pressure Poisson Equation (PPE) by taking Moving Particle Semi-Implicit…

Abstract

Purpose

The purpose of this paper is to find the best solver for parallelizing particle methods based on solving Pressure Poisson Equation (PPE) by taking Moving Particle Semi-Implicit (MPS) method as an example because the solution for PPE is usually the most time-consuming part difficult to parallelize.

Design/methodology/approach

To find the best solver, the authors compare six Krylov solvers, namely, Conjugate Gradient method (CG), Scaled Conjugate Gradient method (SCG), Bi-Conjugate Gradient Stabilized (BiCGStab) method, Conjugate Gradient Squared (CGS) method with Symmetric Lanczos Algorithm (SLA) method and Incomplete Cholesky Conjugate Gradient method (ICCG) in terms of convergence, time consumption, parallel efficiency and memory consumption for the semi-implicit particle method. The MPS method is parallelized by the hybrid Open Multi-Processing (OpenMP)/Message Passing Interface (MPI) model. The dam-break flow and channel flow simulations are used to evaluate the performance of different solvers.

Findings

It is found that CG converges stably, runs fastest in the serial way, uses the least memory and has highest OpenMP parallel efficiency, but its MPI parallel efficiency is lower than SLA because SLA requires less synchronization than CG.

Originality/value

With all these criteria considered and weighed, the recommended parallel solver for the MPS method is CG.

Article
Publication date: 1 February 2006

Ian M. Smith and Lee Margetts

To investigate the cause of a well‐known phenomenon associated with a range of parallel iterative solvers – the variability in the number of iterations required to achieve…

Abstract

Purpose

To investigate the cause of a well‐known phenomenon associated with a range of parallel iterative solvers – the variability in the number of iterations required to achieve convergence.

Design/methodology/approach

The conclusions are based on extensive experiments undertaken using parallel computers. Recently published works are also used to provide additional examples of variability in iteration count.

Findings

The variability of iteration counts experienced by parallelised, element‐by‐element iterative solvers is caused by numerical precision and roundoff.

Research limitations/implications

A theoretical examination of the phenomenon may bring to light a methodology in which the iteration count could be limited to the lower end of the variable range – thus reducing solution times.

Practical implications

The authors believe that the variability in iteration count described for element‐by‐element methods presents no real difficulty to the engineering analyst.

Originality/value

The paper gives a detailed account of the phenomenon and is useful both to developers of parallel iterative solvers and to the analysts that use them in practice.

Details

Engineering Computations, vol. 23 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 September 2008

Mehdi Dehghan and Akbar Mohebbi

The purpose of this paper is to introduce efficient methods for solving the 2D biharmonic equation with Dirichlet boundary conditions of second kind. This equation describes the…

Abstract

Purpose

The purpose of this paper is to introduce efficient methods for solving the 2D biharmonic equation with Dirichlet boundary conditions of second kind. This equation describes the deflection of loaded plate with boundary conditions of simply supported plate kind. Also it can be derived from the calculus of variations combined with the variational principle of minimum potential energy. Because of existing fourth derivatives in this equation, introducing high‐order accurate methods need to use artificial points. Also solving the resulted linear system of equations suffers from slow convergence when iterative methods are used. This paper aims to introduce efficient methods to overcome these problems.

Design/methodology/approach

The paper considers several compact finite difference approximations that are derived on a nine‐point compact stencil using the values of the solution and its second derivatives as the unknowns. In these approximations there is no need to define special formulas near the boundaries and boundary conditions can be incorporated with these techniques. Several iterative linear systems solvers such as Krylov subspace and multigrid methods and their combination (with suitable preconditioner) have been developed to compare the efficiency of each method and to design powerful solvers.

Findings

The paper finds that the combination of compact finite difference schemes with multigrid method and Krylov iteration methods preconditioned by multigrid have excellent results for the second biharmonic equation, and that Krylov iteration methods preconditioned by multigrid are the most efficient methods.

Originality/value

The paper is of value in presenting, via some tables and figures, some numerical experiments which resulted from applying new methods on several test problems, and making comparison with conventional methods.

Details

Kybernetes, vol. 37 no. 8
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 7 March 2016

Christos K. Filelis-Papadopoulos and George A. Gravvanis

– The purpose of this paper is to propose novel factored approximate sparse inverse schemes and multi-level methods for the solution of large sparse linear systems.

Abstract

Purpose

The purpose of this paper is to propose novel factored approximate sparse inverse schemes and multi-level methods for the solution of large sparse linear systems.

Design/methodology/approach

The main motive for the derivation of the various generic preconditioning schemes lies to the efficiency and effectiveness of factored preconditioning schemes in conjunction with Krylov subspace iterative methods as well as multi-level techniques for solving various model problems. Factored approximate inverses, namely, Generic Factored Approximate Sparse Inverse, require less fill-in and are computed faster due to the reduced number of nonzero elements. A modified column wise approach, namely, Modified Generic Factored Approximate Sparse Inverse, is also proposed to further enhance performance. The multi-level approximate inverse scheme, namely, Multi-level Algebraic Recursive Generic Approximate Inverse Solver, utilizes a multi-level hierarchy formed using Block Independent Set reordering scheme and an approximation of the Schur complement that results in the solution of reduced order linear systems thus enhancing performance and convergence behavior. Moreover, a theoretical estimate for the quality of the multi-level approximate inverse is also provided.

Findings

Application of the proposed schemes to various model problems is discussed and numerical results are given concerning the convergence behavior and the convergence factors. The results are comparatively better than results by other researchers for some of the model problems.

Research limitations/implications

Further enhancements are investigated for the proposed factored approximate inverse schemes as well as the multi-level techniques to improve quality of the schemes. Furthermore, the proposed schemes rely on the definition of multiple parameters that for some problems require thorough testing, thus adaptive techniques to define the values of the various parameters are currently under research. Moreover, parallel schemes will be investigated.

Originality/value

The proposed approximate inverse preconditioning schemes as well as multi-level schemes are efficient computational methods that are valuable for computer scientists and for scientists and engineers in engineering computations.

Article
Publication date: 30 September 2014

Zixiang Hu, Shi Zhang, Yun Zhang, Huamin Zhou and Dequn Li

The purpose of this paper is to propose an efficient iterative method for large-scale finite element equations of bad numerical stability arising from deformation analysis with…

Abstract

Purpose

The purpose of this paper is to propose an efficient iterative method for large-scale finite element equations of bad numerical stability arising from deformation analysis with multi-point constraint using Lagrange multiplier method.

Design/methodology/approach

In this paper, taking warpage analysis of polymer injection molding based on surface model as an example, the performance of several popular Krylov subspace methods, including conjugate gradient, BiCGSTAB and generalized minimal residual (GMRES), with diffident Incomplete LU (ILU)-type preconditions is investigated and compared. For controlling memory usage, GMRES(m) is also considered. And the ordering technique, commonly used in the direct method, is introduced into the presented iterative method to improve the preconditioner.

Findings

It is found that the proposed preconditioned GMRES method is robust and effective for solving problems considered in this paper, and approximate minimum degree (AMD) ordering is most beneficial for the reduction of fill-ins in the ILU preconditioner and acceleration of the convergence, especially for relatively accurate ILU-type preconditioning. And because of concerns about memory usage, GMRES(m) is a good choice if necessary.

Originality/value

In this paper, for overcoming difficulties of bad numerical stability resulting from Lagrange multiplier method, together with increasing scale of problems in engineering applications and limited hardware conditions of computer, a stable and efficient preconditioned iterative method is proposed for practical purpose. Before the preconditioning, AMD reordering, commonly used in the direct method, is introduced to improve the preconditioner. The numerical experiments show the good performance of the proposed iterative method for practical cases, which is implemented in in-house and commercial codes on PC.

Details

Engineering Computations, vol. 31 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 2000

I.M. Smith

A system for doing finite element computations in parallel is described. It is general purpose in the sense that it can be used across a wide range of finite element applications…

Abstract

A system for doing finite element computations in parallel is described. It is general purpose in the sense that it can be used across a wide range of finite element applications and in the sense that it is not restricted to any particular parallel hardware. Its performance on computers ranging from clusters of PCs to massively parallel high performance machines is illustrated.

Details

Engineering Computations, vol. 17 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 January 2024

Imtiyaz Ahmad Bhat, Lakshmi Narayan Mishra, Vishnu Narayan Mishra, Cemil Tunç and Osman Tunç

This study aims to discuss the numerical solutions of weakly singular Volterra and Fredholm integral equations, which are used to model the problems like heat conduction in…

Abstract

Purpose

This study aims to discuss the numerical solutions of weakly singular Volterra and Fredholm integral equations, which are used to model the problems like heat conduction in engineering and the electrostatic potential theory, using the modified Lagrange polynomial interpolation technique combined with the biconjugate gradient stabilized method (BiCGSTAB). The framework for the existence of the unique solutions of the integral equations is provided in the context of the Banach contraction principle and Bielecki norm.

Design/methodology/approach

The authors have applied the modified Lagrange polynomial method to approximate the numerical solutions of the second kind of weakly singular Volterra and Fredholm integral equations.

Findings

Approaching the interpolation of the unknown function using the aforementioned method generates an algebraic system of equations that is solved by an appropriate classical technique. Furthermore, some theorems concerning the convergence of the method and error estimation are proved. Some numerical examples are provided which attest to the application, effectiveness and reliability of the method. Compared to the Fredholm integral equations of weakly singular type, the current technique works better for the Volterra integral equations of weakly singular type. Furthermore, illustrative examples and comparisons are provided to show the approach’s validity and practicality, which demonstrates that the present method works well in contrast to the referenced method. The computations were performed by MATLAB software.

Research limitations/implications

The convergence of these methods is dependent on the smoothness of the solution, it is challenging to find the solution and approximate it computationally in various applications modelled by integral equations of non-smooth kernels. Traditional analytical techniques, such as projection methods, do not work well in these cases since the produced linear system is unconditioned and hard to address. Also, proving the convergence and estimating error might be difficult. They are frequently also expensive to implement.

Practical implications

There is a great need for fast, user-friendly numerical techniques for these types of equations. In addition, polynomials are the most frequently used mathematical tools because of their ease of expression, quick computation on modern computers and simple to define. As a result, they made substantial contributions for many years to the theories and analysis like approximation and numerical, respectively.

Social implications

This work presents a useful method for handling weakly singular integral equations without involving any process of change of variables to eliminate the singularity of the solution.

Originality/value

To the best of the authors’ knowledge, the authors claim the originality and effectiveness of their work, highlighting its successful application in addressing weakly singular Volterra and Fredholm integral equations for the first time. Importantly, the approach acknowledges and preserves the possible singularity of the solution, a novel aspect yet to be explored by researchers in the field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 July 2006

Oleg Iliev, Joachim Linn, Mathias Moog, Dariusz Niedziela and Vadimas Starikovicius

This study proposes to develop and investigate different iterative solvers for non‐Newtonian flow equations.

Abstract

Purpose

This study proposes to develop and investigate different iterative solvers for non‐Newtonian flow equations.

Design/methodology/approach

Existing approaches for the time discretization of the flow equation and for an iterative solution of the discrete systems are discussed. Ideas for further development of existing preconditioners are proposed, implemented and investigated numerically.

Findings

A two‐level preconditioning, consisting of a transformation of the original system in the first step and subsequent preconditioning of the transformed system is suggested. The GMRES iterative method, which usually performs well when applied to academic problems, showed dissatisfactory performance for the type of industrial flow simulations investigated in this work. It was found that the BiCGStab method performed best in the tests presented here.

Research limitations/implications

The iterative solvers considered here were investigated only for a certain class of polymer flows. More detailed studies for other non‐Newtonian flows should be carried out.

Originality/value

The work presented in this paper fills a gap related to the usage of efficient iterative methods for non‐Newtonian flow simulations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 16 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 43