Search results

1 – 10 of 74
Article
Publication date: 4 July 2016

Ping Jiang, Qi Zhou, Xinyu Shao, Ren Long and Hui Zhou

The purpose of this paper is to present a modified bi-level integrated system collaborative optimization (BLISCO) to avoid the non-separability of the original BLISCO. Besides, to…

Abstract

Purpose

The purpose of this paper is to present a modified bi-level integrated system collaborative optimization (BLISCO) to avoid the non-separability of the original BLISCO. Besides, to mitigate the computational burden caused by expensive simulation codes and employ both efficiently simplified and expensively detailed information in multidisciplinary design optimization (MDO), an effective framework combining variable fidelity metamodels (VFM) and modified BLISCO (MBLISCO) (VFM-MBLISCO) is proposed.

Design/methodology/approach

The concept of the quasi-separable MDO problems is introduced to limit range of applicability about the BLISCO method and then based on the quasi-separable MDO form, the modification of BLISCO method without any derivatives is presented to solve the problems of BLISCO. Besides, an effective framework combining VFM-MBLISCO is presented.

Findings

One mathematical problem conforms to the quasi-separable MDO form is tested and the overall results illustrate the feasibility and robustness of the MBLISCO. The design of a Small Waterplane Area Twin Hull catamaran demonstrates that the proposed VFM-MBLISCO framework is a feasible and efficient design methodology in support of design of engineering products.

Practical implications

The proposed approach exhibits great capability for MDO problems with tremendous computational costs.

Originality/value

A MBLISCO is proposed which can avoid the non-separability of the original BLISCO and an effective framework combining VFM-MBLISCO is presented to efficiently integrate the different fidelities information in MDO.

Article
Publication date: 29 April 2014

Alexandru C. Berbecea, Frédéric Gillon and Pascal Brochet

The purpose of this paper is to present an application of a multidisciplinary multi-level design optimization methodology for the optimal design of a complex device from the field…

Abstract

Purpose

The purpose of this paper is to present an application of a multidisciplinary multi-level design optimization methodology for the optimal design of a complex device from the field of electrical engineering throughout discipline-based decomposition. The considered benchmark is a single-phase low voltage safety isolation transformer.

Design/methodology/approach

The multidisciplinary optimization of a safety isolation transformer is addressed within this paper. The bi-level collaborative optimization (CO) strategy is employed to coordinate the optimization of the different disciplinary analytical models of the transformer (no-load and full-load electromagnetic models and thermal model). The results represent the joint decision of the three distinct disciplinary optimizers involved in the design process, under the coordination of the CO's master optimizer. In order to validate the proposed approach, the results are compared to those obtained using a classical single-level optimization method – sequential quadratic programming – carried out using a multidisciplinary feasible formulation for handling the evaluation of the coupling model of the transformer.

Findings

Results show a good convergence of the CO process with the analytical modeling of the transformer, with a reduced number of coordination iterations. However, a relatively important number of disciplinary models evaluations were required by the local optimizers.

Originality/value

The CO multi-level methodology represents a new approach in the field of electrical engineering. The advantage of this approach consists in that it integrates decisions from different teams of specialists within the optimal design process of complex systems and all exchanges are managed within a unique coordination process.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 November 2015

W. Li, Y Wen and L X Li

The purpose of this paper is to improve the framework of classical collaborative optimization (CCO) so as to solve the multi-disciplinary optimization problems with parametric and…

Abstract

Purpose

The purpose of this paper is to improve the framework of classical collaborative optimization (CCO) so as to solve the multi-disciplinary optimization problems with parametric and parameter-free variables, and therefore an improved collaborative optimization (ICO) is proposed.

Design/methodology/approach

To clarify the relation of design variables, the optimization problem is classified into three general case. For each case, the respective treatment is suggested for coupled or uncoupled variables in the framework of the ICO.

Findings

The decoupling treatment suggested in the ICO framework not only avoids the iteration divergence and thus optimization failure, but increases the optimal design space to some extent. The method is validated by optimizing an aircraft assembly and a high-speed train assembly.

Originality/value

The two practical examples proves that the present ICO succeeds in solving the problem that the CCO failed to, also gives the optimal results better than those from the sequential optimization method.

Article
Publication date: 11 April 2022

Amin Ahwazian, Atefeh Amindoust, Reza Tavakkoli-Moghaddam and Mehrdad Nikbakht

The purpose of this paper is to design petroleum products’ supply chain management, which includes efficient integration of suppliers, manufacturers, storehouses and retailers.

Abstract

Purpose

The purpose of this paper is to design petroleum products’ supply chain management, which includes efficient integration of suppliers, manufacturers, storehouses and retailers.

Design/methodology/approach

This paper proposes that a three-level supply chain will be turned into a bi-level supply chain of petroleum products by simultaneous integration of the middle level with the upstream and downstream levels. Also, it is integrally optimized by considering the multiple managerial flows' mutual results at various supply chain levels. Also, it is integrally optimized by considering the multiple managerial flows' mutual results at various supply chain levels.

Findings

The concepts of the design, structure and outputs are led by the model's solution. The model also responds to the variations in the market via coordination in the related decisions to the distribution, production and inventory issues, and also coordinating between the demands and production.

Research limitations/implications

This paper has limited its analysis to definite values due to the over-expansion of calculations and analysis. Future works can study other aspects of the proposed model for a multi-level petroleum product supply chain in different states of certain parameters and time zones.

Practical implications

The designed model can directly and transparently help the oil managers and decision-makers lower the costs of manufacturing, distribution and sales with respect to the determined criteria.

Originality/value

This paper establishes that effectiveness of the dynamic petroleum materials supply chain design will increase by considering maintained and increased production costs and coordinate management flows at all levels by supply chain creation’s integration.

Details

Journal of Advances in Management Research, vol. 19 no. 4
Type: Research Article
ISSN: 0972-7981

Keywords

Article
Publication date: 6 July 2015

Hyeong-Uk Park, Jae-Woo Lee, Joon Chung and Kamran Behdinan

The purpose of this paper is to study the consideration of uncertainty from analysis modules for aircraft conceptual design by implementing uncertainty-based design optimization

Abstract

Purpose

The purpose of this paper is to study the consideration of uncertainty from analysis modules for aircraft conceptual design by implementing uncertainty-based design optimization methods. Reliability-Based Design Optimization (RBDO), Possibility-Based Design Optimization (PBDO) and Robust Design Optimization (RDO) methods were developed to handle uncertainties of design optimization. The RBDO method is found suitable for uncertain parameters when sufficient information is available. On the other hand, the PBDO method is proposed when uncertain parameters have insufficient information. The RDO method can apply to both cases. The RBDO, PBDO and RDO methods were considered with the Multidisciplinary Design Optimization (MDO) method to generate conservative design results when low fidelity analysis tools are used.

Design/methodology/approach

Methods combining MDO with RBDO, PBDO and RDO were developed and have been applied to a numerical analysis and an aircraft conceptual design. This research evaluates and compares the characteristics of each method in both cases.

Findings

The RBDO result can be improved when the amount of data concerning uncertain parameters is increased. Conversely, increasing information regarding uncertain parameters does not improve the PBDO result. The PBDO provides a conservative result when less information about uncertain parameters is available.

Research limitations/implications

The formulation of RDO is more complex than other methods. If the uncertainty information is increased in aircraft conceptual design case, the accuracy of RBDO will be enhanced.

Practical implications

This research increases the probability of a feasible design when it considers the uncertainty. This result gives more practical optimization results on a conceptual design level for fabrication.

Originality/value

It is RBDO, PBDO and RDO methods combined with MDO that satisfy the target probability when the uncertainties of low fidelity analysis models are considered.

Article
Publication date: 11 May 2015

Amirhossein Adami, Mahda Mortazavi and Mehran Nosratollahi

For complex engineering problems, multidisciplinary design optimization (MDO) techniques use some disciplines that need to be run several times in different modules. In addition…

Abstract

Purpose

For complex engineering problems, multidisciplinary design optimization (MDO) techniques use some disciplines that need to be run several times in different modules. In addition, mathematical modeling of a discipline can be improved for each module. The purpose of this paper is to show that multi-modular design optimization (MMO) improves the design performances in comparison with MDO technique for complex systems.

Design/methodology/approach

MDO framework and MMO framework are developed to optimum design of a complex system. The nonlinear equality and inequality constrains are considered. The system optimizers included Genetic Algorithm and Sequential Quadratic Programming.

Findings

As shown, fewer design variables (optimization variables) are needed at the system level for MMO. Unshared variables are optimized in the related module when shared variables are optimized at the system level. The results of this research show that MMO has lower elapsed times (14 percent) with lower F-count (16 percent).

Practical implications

The monopropellant propulsion upper-stage is selected as a case study. In this paper, the efficient model of the monopropellant propulsion system is proposed. According to the results, the proposed model has acceptable accuracy in mass model (error < 2 percent), performance estimation (error < 6 percent) and geometry estimation (error < 10 percent).

Originality/value

The monopropellant propulsion system is broken down into the three important modules including propellant tank (tank and propellant), pressurized feeding (tank and gas) and thruster (catalyst, nozzle and catalysts bed) when chemical decomposition, aerothermodynamics, mass and configuration, catalyst and structure have been considered as the disciplines. The both MMO and MDO frameworks are developed for the monopropellant propulsion system.

Details

International Journal of Intelligent Unmanned Systems, vol. 3 no. 2/3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 7 March 2016

Andrzej Iwaniuk, Witold Wiśniowski and Jerzy Żółtak

The purpose of this paper is to present application of multidisciplinary design optimisation (MDO) in redesign of a small composite aircraft. The redesign process was integration…

Abstract

Purpose

The purpose of this paper is to present application of multidisciplinary design optimisation (MDO) in redesign of a small composite aircraft. The redesign process was integration of the turboprop engine in a small composite aircraft. The process requires cooperation of specialists from many disciplines and definition of their tasks. For selected tasks, the authors present results of the calculation.

Design/methodology/approach

The authors used collaborative optimisation (CO) algorithm to solve the problem. They decomposed this complex process into a set of tasks in different engineering/research disciplines and used techniques and methods specific for each task (research/engineering discipline) to find a proper solution. The computer-aided design (CAD), computational fluid dynamics (CFD) and computational structural mechanics (CSM) commercial software were used as common tools as well as intentionally developed computer programmes were used as basic tools in some tasks, in particular, for aerodynamic optimisation, calculation of load and stability of aircraft. The exchange of data between separate tasks allowed achieving the main goal of complex design process.

Findings

Selected optimisation algorithm, CO, proved efficient for the authors’ purposes. The effectiveness of multidisciplinary optimisation depends as much on organisational parameters as it does on technical and technology parameters.

Practical implications

Multidisciplinary optimisation needs to be an integral part of analysis and design process. The successful optimisation results allowed to meet the requirements and to proceed to the next phase of work – preparing technical documentation for manufacturing the components necessary for integration of the airplane with the new engine.

Originality/value

Presented results of design process are a valuable example of how to achieve the final goal in an ongoing project.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 July 2019

Gaurav Kumar Badhotiya, Gunjan Soni and M.L. Mittal

This paper aims to deal with integrated planning and scheduling problem in multi-site manufacturing environment and provides a comprehensive review of literature. Classification…

Abstract

Purpose

This paper aims to deal with integrated planning and scheduling problem in multi-site manufacturing environment and provides a comprehensive review of literature. Classification schemes and various aspects of planning and scheduling problem in multi-site manufacturing are highlighted.

Design/methodology/approach

A structured review methodology is adopted to classify the relevant literature. Taxonomy for classification of the problem is presented, followed by review of modelling approaches, solution strategies and challenges faced in multi-site integrated planning and scheduling problem.

Findings

The paper is concluded with interesting research findings and a short view on directions related to modelling approach, solution strategy and technique for further developments in the area of multi-site integrated planning and scheduling.

Research limitations/implications

The findings of this study would be helpful for future researchers and practitioners to provide a knowledge base and to further work in this area.

Originality/value

This study attempts to consolidate the diverse literature available and highlight the various aspects of planning and scheduling in multi-site manufacturing.

Details

Journal of Global Operations and Strategic Sourcing, vol. 13 no. 1
Type: Research Article
ISSN: 2398-5364

Keywords

Article
Publication date: 14 September 2021

Peiman Ghasemi, Fariba Goodarzian, Angappa Gunasekaran and Ajith Abraham

This paper proposed a bi-level mathematical model for location, routing and allocation of medical centers to distribution depots during the COVID-19 pandemic outbreak. The…

Abstract

Purpose

This paper proposed a bi-level mathematical model for location, routing and allocation of medical centers to distribution depots during the COVID-19 pandemic outbreak. The developed model has two players including interdictor (COVID-19) and fortifier (government). Accordingly, the aim of the first player (COVID-19) is to maximize system costs and causing further damage to the system. The goal of the second player (government) is to minimize the costs of location, routing and allocation due to budget limitations.

Design/methodology/approach

The approach of evolutionary games with environmental feedbacks was used to develop the proposed model. Moreover, the game continues until the desired demand is satisfied. The Lagrangian relaxation method was applied to solve the proposed model.

Findings

Empirical results illustrate that with increasing demand, the values of the objective functions of the interdictor and fortifier models have increased. Also, with the raising fixed cost of the established depot, the values of the objective functions of the interdictor and fortifier models have raised. In this regard, the number of established depots in the second scenario (COVID-19 wave) is more than the first scenario (normal COVID-19 conditions).

Research limitations/implications

The results of the current research can be useful for hospitals, governments, Disaster Relief Organization, Red Crescent, the Ministry of Health, etc. One of the limitations of the research is the lack of access to accurate information about transportation costs. Moreover, in this study, only the information of drivers and experts about transportation costs has been considered. In order to implement the presented solution approach for the real case study, high RAM and CPU hardware facilities and software facilities are required, which are the limitations of the proposed paper.

Originality/value

The main contributions of the current research are considering evolutionary games with environmental feedbacks during the COVID-19 pandemic outbreak and location, routing and allocation of the medical centers to the distribution depots during the COVID-19 outbreak. A real case study is illustrated, where the Lagrangian relaxation method is employed to solve the problem.

Details

The International Journal of Logistics Management, vol. 34 no. 4
Type: Research Article
ISSN: 0957-4093

Keywords

Open Access
Article
Publication date: 26 July 2021

Weifei Hu, Tongzhou Zhang, Xiaoyu Deng, Zhenyu Liu and Jianrong Tan

Digital twin (DT) is an emerging technology that enables sophisticated interaction between physical objects and their virtual replicas. Although DT has recently gained significant…

12113

Abstract

Digital twin (DT) is an emerging technology that enables sophisticated interaction between physical objects and their virtual replicas. Although DT has recently gained significant attraction in both industry and academia, there is no systematic understanding of DT from its development history to its different concepts and applications in disparate disciplines. The majority of DT literature focuses on the conceptual development of DT frameworks for a specific implementation area. Hence, this paper provides a state-of-the-art review of DT history, different definitions and models, and six types of key enabling technologies. The review also provides a comprehensive survey of DT applications from two perspectives: (1) applications in four product-lifecycle phases, i.e. product design, manufacturing, operation and maintenance, and recycling and (2) applications in four categorized engineering fields, including aerospace engineering, tunneling and underground engineering, wind engineering and Internet of things (IoT) applications. DT frameworks, characteristic components, key technologies and specific applications are extracted for each DT category in this paper. A comprehensive survey of the DT references reveals the following findings: (1) The majority of existing DT models only involve one-way data transfer from physical entities to virtual models and (2) There is a lack of consideration of the environmental coupling, which results in the inaccurate representation of the virtual components in existing DT models. Thus, this paper highlights the role of environmental factor in DT enabling technologies and in categorized engineering applications. In addition, the review discusses the key challenges and provides future work for constructing DTs of complex engineering systems.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 2 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

1 – 10 of 74