Search results

1 – 10 of 23
Article
Publication date: 31 May 2023

Baran Bozyigit

This study aims to perform dynamic response analysis of damaged rigid-frame bridges under multiple moving loads using analytical based transfer matrix method (TMM). The effects of…

161

Abstract

Purpose

This study aims to perform dynamic response analysis of damaged rigid-frame bridges under multiple moving loads using analytical based transfer matrix method (TMM). The effects of crack depth, moving load velocity and damping on the dynamic response of the model are discussed. The dynamic amplifications are investigated for various damage scenarios in addition to displacement time-histories.

Design/methodology/approach

Timoshenko beam theory (TBT) and Rayleigh-Love bar theory (RLBT) are used for bending and axial vibrations, respectively. The cracks are modeled using rotational and extensional springs. The structure is simplified into an equivalent single degree of freedom (SDOF) system using exact mode shapes to perform forced vibration analysis according to moving load convoy.

Findings

The results are compared to experimental data from literature for different damaged beam under moving load scenarios where a good agreement is observed. The proposed approach is also verified using the results from previous studies for free vibration analysis of cracked frames as well as dynamic response of cracked beams subjected to moving load. The importance of using TBT and RLBT instead of Euler–Bernoulli beam theory (EBT) and classical bar theory (CBT) is revealed. The results show that peak dynamic response at mid-span of the beam is more sensitive to crack length when compared to moving load velocity and damping properties.

Originality/value

The combination of TMM and modal superposition is presented for dynamic response analysis of damaged rigid-frame bridges subjected to moving convoy loading. The effectiveness of transfer matrix formulations for the free vibration analysis of this model shows that proposed approach may be extended to free and forced vibration analysis of more complicated structures such as rigid-frame bridges supported by piles and having multiple cracks.

Details

Engineering Computations, vol. 40 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 February 2022

Leila Bousbia, Ammar Amouri and Abdelhakim Cherfia

Continuum robots modeling, be it from a hard or soft class, is giving rise to several challenges compared with rigid robots. These challenges are mainly due to kinematic…

Abstract

Purpose

Continuum robots modeling, be it from a hard or soft class, is giving rise to several challenges compared with rigid robots. These challenges are mainly due to kinematic redundancy, dynamic nonlinearity and high flexibility. This paper aims initially at designing a hard class of continuum robots, namely, cable-driven continuum robot (CDCR) and equally at developing their kinematic and dynamic models.

Design/methodology/approach

First, the CDCR prototype is constructed, and its description is made. Second, kinematic models are established based on the constant curvature assumption and inextensible bending section. Third, by using the Lagrange method, the dynamic model is derived under some simplifications and based on the kinematic equations, in which the flexible backbone’s elasticity modulus was identified experimentally. Finally, the static model of the CDCR is also derived based on the dynamic model.

Findings

Numerical examples are carried out using Matlab software to verify the static and dynamic models. Moreover, the static model is validated by comparing the simulation’s results to the real measurements that have been provided with satisfactory results.

Originality/value

To reduce the complexity of the dynamic model’s expressions and avoid the numerical singularity when the bending angle is close to zero, some simplifications have been taken, especially for the kinetic energy terms, by using the nonlinear functions approximation. Hence, the main advantage of this analytical-approximate solution is that it can be applied in the bending angle that ranges up to 2p with reasonable errors, unlike the previously proposed techniques. Furthermore, the resulting dynamic model has, to some extent, the proprieties of simplicity, accuracy and fast computation time. Ultimately, the obtained results from the simulations and real measurements demonstrate that the considered CDCR’s static and dynamic models are feasible.

Details

World Journal of Engineering, vol. 20 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 September 2023

Fei Qi, Dongming Bai, Xiaoming Dou, Heng Zhang, Haishan Pei and Jing Zhu

This paper aims to present a kinematics analysis method and statics based control of the continuum robot with mortise and tenon joints to achieve better control performance of the…

Abstract

Purpose

This paper aims to present a kinematics analysis method and statics based control of the continuum robot with mortise and tenon joints to achieve better control performance of the robot.

Design/methodology/approach

The kinematics model is derived by the geometric analysis method under the piecewise constant curvature assumption, and the workspace and dexterity of the proposed robot are analyzed to optimize its structure parameters. Moreover, the statics model is established by the principle of virtual work, which is used to analyze the mapping relationship between the bending deformation and the applied forces/torques. To improve the control accuracy of the robot, a model-based controller is put forward.

Findings

Results of the experiments verify the feasibility of the proposed continuum structure and the correctness of the established model and the control method. The force deviation between the theoretical value and the actual value is relatively small, and the mean value of the deviation between the driving forces is only 0.46 N, which verify the established statics model and the controller.

Originality/value

The proposed model and motion controller can realize its accurate bending control with a few deviations, which can be used as the reference for the motion planning and dynamic model of the continuum robot.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 March 2023

Javad Masrour, Seyed Hossein Sadati and Morteza Shahravi

This study aims to simulate gust effects on the aeroelastic behavior of a flexible aircraft. The dynamic response of the system for different discreet gust excitations is obtained…

Abstract

Purpose

This study aims to simulate gust effects on the aeroelastic behavior of a flexible aircraft. The dynamic response of the system for different discreet gust excitations is obtained using numerical simulations.

Design/methodology/approach

Coupled dynamics, including rigid and flexible body coordinates, are considered for modeling the dynamic behavior of the aircraft. Wing is considered flexible and other parts are considered rigid. Wing is modeled with nonlinear Euler Bernoulli beam. Moreover, unsteady aerodynamics based on the Wagner function are used for aerodynamic loading, and the results are compared with those of quasi-steady aerodynamics.

Findings

Von Kármán continuous gust is applied to this aircraft. In addition, the discrete “1- cosine” gust with different gust lengths is applied to the aircraft, and the maximum and minimum accelerations are computed. It is shown that the nonlinear modeling of the system represents the actual behavior and causes limit cycle oscillation phenomena.

Originality/value

This methodology can yield a relatively simple dynamic model for high aspect ratio aircrafts to provide insights into the vehicles’ dynamics, which can be available early in the design cycle.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 May 2022

Lalit K. Toke and Milind M. Patil

The purpose of this paper is to develop an organized structure for damage detection of a cracked cantilever beam using finite element method and experimental method technique.

Abstract

Purpose

The purpose of this paper is to develop an organized structure for damage detection of a cracked cantilever beam using finite element method and experimental method technique.

Design/methodology/approach

Due to presence of cracks the dynamic characteristics of structure change. The change in dynamic behavior has been used as one of the criteria of fault diagnosis for structures. Major characteristics of the structure which undergo change due to presence of crack are: natural frequencies, the amplitude responses due to vibration and the mode shapes. Therefore, an attempt has been made to formulate a smart technique for minimizing the amplitude of vibration for crack cantilever beam structures. In the analysis both single and double cracks are taken into account.

Findings

The results of the active vibration control experiments proved that piezoelectric sensor/actuator pair is an effective sensor and actuator configuration for active vibration control to reduce the amplitude of vibration for closed-loop system.

Originality/value

It is necessary that structures must safely work during its service life, but damages initiate a breakdown period on the structures which directly affect the industrial growth. It is a recognized fact that dynamic behavior of structures changes due to presence of crack. It has been observed that the presence of cracks in structures or in machine members leads to operational problem as well as premature failure.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 December 2021

Malika Belhocine, Youcef Bouafia, Mohand Said Kachi and Karim Benyahi

The calculation and design of the structures are carried out with the aim of obtaining a sufficiently ductile behavior to allow the structure to undergo displacements, without…

Abstract

Purpose

The calculation and design of the structures are carried out with the aim of obtaining a sufficiently ductile behavior to allow the structure to undergo displacements, without risk of sudden breaks or loss of stability. The purpose of this study is to develop and validate a computer program (Thin beam2), allowing the modeling and simulation of the nonlinear behavior of reinforced concrete elements, on the other part, it is estimating the local and global ductility of the sections or elements constituting these structures.

Design/methodology/approach

The authors present two nonlinear analysis methods to carry out a parametric study of the factors influencing the local and global ductility of reinforced concrete structures. The first consists in evaluating the nonlinear behavior at the level of the cross-section of the reinforced concrete elements used in the elaborate Sectenol 1 program, it allows us to have the local ductility. The second, allows us to evaluate the nonlinear behavior of the element used in the modified thin beam 2 program, it allows us to estimate the overall ductility of the element.

Findings

The validation results of the Thin beam2 program are very satisfactory, by conferring the analytic and experimental results obtained by various researchers and the parametric study shows that each factor such as the compressive strength of the concrete has a favorable effect on ductility. Conversely, the normal compression force and the high resistance of tensioned reinforcements adversely affect ductility.

Originality/value

The reliability of the two programs lies in obtaining the local and global ductility of reinforced concrete structures because the calculation and design of the structures are carried out with the aim of obtaining ductile behavior without risk of breakage and instability.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 March 2024

Tianlei Wang, Fei Ding and Zhenxing Sun

Stiffness adjusting ability is essential for soft robotic arms to perform complex tasks. A soft state enables dexterous operation and safe interaction, while a rigid state enables…

Abstract

Purpose

Stiffness adjusting ability is essential for soft robotic arms to perform complex tasks. A soft state enables dexterous operation and safe interaction, while a rigid state enables large force output or heavy weight carrying. However, making a compact integration of soft actuators with powerful stiffness adjusting mechanisms is challenging. This study aims to develop a piston-like particle jamming mechanism for enhanced stiffness adjustment of a soft robotic arm.

Design/methodology/approach

The arm has two pairs of differential tendons for spatial bending, and a jamming core consists of four jamming units with particles sealed inside braided tubes for stiffness adjustment. The jamming core is pushed and pulled smoothly along the tendons by a piston, which is then driven by a motor and a ball screw mechanism.

Findings

The tip displacement of the arm under 150 N jamming force and no more than 0.3 kg load is minimal. The maximum stiffening ratio measured in the experiment under 150 N jamming force is up to 6–25 depends on the bending direction and added load of the arm, which is superior to most of the vacuum powered jamming method.

Originality/value

The proposed robotic arm makes an innovative compact integration of tendon-driven robotic arm and motor-driven piston-like particle jamming mechanism. The jamming force is much larger compared to conventional vacuum-powered systems and results in a superior stiffening ability.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 October 2021

Kaveh Salmalian, Ali Alijani and Habib Ramezannejad Azarboni

The purpose of this study is to investigate the post-buckling analysis of functionally graded columns by using three analytical, approximate and numerical methods. A pre-defined…

Abstract

Purpose

The purpose of this study is to investigate the post-buckling analysis of functionally graded columns by using three analytical, approximate and numerical methods. A pre-defined function as an initial assumption for the post-buckling path is introduced to solve the differential equation. The finite difference method is used to approximate the lateral deflection of the column based on the differential equation. Moreover, the finite element method is used to derive the tangent stiffness matrix of the column.

Design/methodology/approach

The non-linear buckling analysis of functionally graded materials is carried out by using three analytical, finite difference and finite element methods. The elastic deformation and Euler-Bernoulli beam theory are considered to establish the constitutive and kinematics relations, respectively. The governing differential equation of the post-buckling problem is derived through the energy method and the calculus variation.

Findings

An incremental iterative solution and the perturbation of the displacement vector at the critical buckling point are performed to determine the post-buckling path. The convergence of the finite element results and the effects of geometric and material characteristics on the post-buckling path are investigated.

Originality/value

The key point of the research is to compare three methods and to detect error sources by considering the derivation process of relations. This comparison shows that a non-incremental solution in the analytical and finite difference methods and an initial assumption in the analytical method lead to an error in results. However, the post-buckling path in the finite element method is traced by the updated tangent stiffness matrix in each load step without any initial limitation.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 31 July 2023

Lei Li and Siqi An

This paper aims to investigate analytical solutions of natural frequencies and mode shapes of Euler-Bernoulli beams with step changes in the stiffness.

Abstract

Purpose

This paper aims to investigate analytical solutions of natural frequencies and mode shapes of Euler-Bernoulli beams with step changes in the stiffness.

Design/methodology/approach

In this work, analytical solutions for a beam with a single discontinuity was performed. Subsequently, based on an effective matrix formulation, the closed-form expressions of the single discontinuity beam could be conveniently extended to stepped beams with multiple stiffness discontinuities.

Findings

The results of the study show that the natural frequency of the beam can be adjusted by the local stiffness variation, and step location plays a significant role in free vibration responses.

Originality/value

The effects of the stiffness of the segment and step location on the natural frequencies of the stepped beams under different boundary conditions were examined using the proposed analytical scheme. This study provides insights into the design of variable-stiffness beam structures with the capability to adjust natural frequencies.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 3 October 2023

Mohammad Hadi Moradi and Mehdi Ranjbar-Roeintan

The purpose of this research is to extract the natural frequencies of a circular plate containing a central hole reinforced with boron nitride nanotubes (BNNTs) and containing…

Abstract

Purpose

The purpose of this research is to extract the natural frequencies of a circular plate containing a central hole reinforced with boron nitride nanotubes (BNNTs) and containing piezoelectric layers.

Design/methodology/approach

A unit cell shall be taken into account for the simulation of BNNT's volume fraction. A rectangular micromechanical model is used to obtain the mechanical properties of unit cell of piezoelectric fiber-reinforced composite (PFRC). The three-dimensional (3D) elasticity method is presented to provide the relationship between displacements and stresses. The one-dimensional differential quadrature method (1D-DQM) and the state-space methodology are combined to create the semi-analytical technique. The state-space approach is utilized to implement an analytical resolution in the thickness direction, and 1D-DQM is used to implement an approximation solution in the radial direction. The composite consists of a polyvinylidene fluoride (PVDF) matrix and BNNTs as reinforcement.

Findings

A study on the PFRC is carried, likewise, the coefficients of its properties are obtained using a micro-electromechanical model known as the rectangular model. To implement the DQM, the plate was radially divided into sample points, each with eight state variables. The boundary situation and DQM are used to discretize the state-space equations, and the top and bottom application surface conditions are used to determine the natural frequencies of the plate. The model's convergence is assessed. Additionally, the dimensionless frequency is compared to earlier works and ABAQUS simulation in order to validate the model. Finally, the effects of the thickness, lateral wavenumber, boundary conditions and BNNT volume fraction on the annular plate's free vibration are investigated. The important achievements are that increasing the volume fraction of BNNTs increases the natural frequency.

Originality/value

The micromechanical “XY rectangle” model in PFRC along with the three-dimensional elasticity model is used in this literature to assess how the piezoelectric capabilities of BNNTs affect the free vibration of polymer-based composite annular plates under various boundary conditions.

Details

International Journal of Structural Integrity, vol. 14 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 23