Search results

1 – 3 of 3
Article
Publication date: 4 December 2018

Konstantin Risse, Matthias Schorgel, Dirk Bartel, Bernhard Karpuschewski and Florian Welzel

The purpose of this paper is to investigate the influence of different finish processes on the surface integrity and tribological behaviour of cylinder running surfaces…

Abstract

Purpose

The purpose of this paper is to investigate the influence of different finish processes on the surface integrity and tribological behaviour of cylinder running surfaces for internal combustion engines.

Design/methodology/approach

The cutting force during finishing and the resulting surface topography was measured for a variety of cylinder running surfaces made of EN-GJL-250, EN-GJV-400 and thermal sprayed aluminium alloy. A separate conditioning tool was developed and tested. Different analysis methods (SEM, EDX, SIMS and FIB) for the characterisation of the boundary conditions were used. By an oscillating friction wear test and a single cylinder floating liner engine, the running-in and frictional behaviour was rated.

Findings

It was shown that honing with low cutting forces and silicon carbide cutting material decreases the friction in operation. The characteristics of the boundary layers after running-in depend on the finish machining process. A preconditioning with a separate tool can adjust the boundary layer and running-in behaviour. Based on the experimental results, a multi-body and computational fluid dynamics simulation was developed for the floating liner engine.

Originality/value

The results demonstrate the potential of finishing with low process forces to reduce friction and the need for a complete consideration of the tribological system piston ring/cylinder liner surface.

Details

Industrial Lubrication and Tribology, vol. 71 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 March 2004

Marcel Tichem, Defeng Lang and Bernhard Karpuschewski

This paper proposes a classification scheme for the quantified analysis of micro‐grip principles. Micro‐part gripping has received quite some attention in micro‐assembly…

1203

Abstract

This paper proposes a classification scheme for the quantified analysis of micro‐grip principles. Micro‐part gripping has received quite some attention in micro‐assembly research. However, there is a lack of quantified data on the characteristics and applicability of micro‐grip principles. The micro‐grip principle is the physical principle that produces the necessary forces to get and maintain a part in a position with respect to the gripper. The classification scheme defines criteria that are essential in the evaluation and selection of a micro‐grip principle for gripping a given part. The criteria are defined on the basis of characteristics of the parts to be gripped, demands on the grip operation to be performed and characteristics of the environment in which the grip operation takes place. The classification scheme is evaluated using examples from literature.

Details

Assembly Automation, vol. 24 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 December 2004

Vincent Henneken, Marcel Tichem and Bernhard Karpuschewski

An alternative way of performing micro‐assembly tasks is by means of product‐internal assembly functions. After a coarse alignment step, the parts are fine positioned…

Abstract

An alternative way of performing micro‐assembly tasks is by means of product‐internal assembly functions. After a coarse alignment step, the parts are fine positioned relative to each other by functionality that is integrated with the product. This functionality includes part actuation, position sensing and part freezing. They replace expensive machinery and delicate manual labour, and are aimed to result in lower total production costs. Micro electro mechanical system (MEMS) technology has important benefits to be used as supporting technology, because it allows for cost reduction (batch production), and structures can be made with small dimensions and high accuracy. The objective of this paper is to develop a reliable and reproducible interconnection technology using MEMS‐based product‐internal assembly functions, by which packaging cost is reduced and yield is improved. The considered case is the packaging of optical fibre to chip couplings.

Details

Assembly Automation, vol. 24 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 3 of 3