Search results

1 – 5 of 5
Open Access
Article
Publication date: 24 October 2022

Babak Lotfi and Bengt Ake Sunden

This study aims to computational numerical simulations to clarify and explore the influences of periodic cellular lattice (PCL) morphological parameters – such as lattice…

1154

Abstract

Purpose

This study aims to computational numerical simulations to clarify and explore the influences of periodic cellular lattice (PCL) morphological parameters – such as lattice structure topology (simple cubic, body-centered cubic, z-reinforced body-centered cubic [BCCZ], face-centered cubic and z-reinforced face-centered cubic [FCCZ] lattice structures) and porosity value ( ) – on the thermal-hydraulic characteristics of the novel trussed fin-and-elliptical tube heat exchanger (FETHX), which has led to a deeper understanding of the superior heat transfer enhancement ability of the PCL structure.

Design/methodology/approach

A three-dimensional computational fluid dynamics (CFD) model is proposed in this paper to provide better understanding of the fluid flow and heat transfer behavior of the PCL structures in the trussed FETHXs associated with different structure topologies and high-porosities. The flow governing equations of the trussed FETHX are solved by the CFD software ANSYS CFX® and use the Menter SST turbulence model to accurately predict flow characteristics in the fluid flow region.

Findings

The thermal-hydraulic performance benchmarks analysis – such as field synergy performance and performance evaluation criteria – conducted during this research successfully identified demonstrates that if the high porosity of all PCL structures decrease to 92%, the best thermal-hydraulic performance is provided. Overall, according to the obtained outcomes, the trussed FETHX with the advantages of using BCCZ lattice structure at 92% porosity presents good thermal-hydraulic performance enhancement among all the investigated PCL structures.

Originality/value

To the best of the authors’ knowledge, this paper is one of the first in the literature that provides thorough thermal-hydraulic characteristics of a novel trussed FETHX with high-porosity PCL structures.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 3 February 2022

Shian Li, Zhi Yang, Yihui Liu, Qiuwan Shen, Guogang Yang and Bengt Ake Sunden

The purpose of this paper is to investigate the heat and mass transport characteristics in microchannel reactors with non-uniform catalyst distributions.

Abstract

Purpose

The purpose of this paper is to investigate the heat and mass transport characteristics in microchannel reactors with non-uniform catalyst distributions.

Design/methodology/approach

A two-dimensional model is developed to study the heat and mass transport characteristics in microchannel reactors. The heat and mass transport processes in the microchannel reactors with non-uniform catalyst distribution in the catalytic combustion channel are also studied.

Findings

The simulated results are compared in terms of the distributions of species mole fraction, temperature and reaction rate for the conventional and new designed reactors. It is found that the chemical reaction, heat and mass transport processes are significantly affected and the maximum temperature in the reactor is also greatly reduced when a non-uniform catalyst distribution is applied in the combustion catalyst layer.

Practical implications

This study can improve the understanding of the transportation characteristics in microchannel reactors with non-uniform catalyst distributions and provide guidance for the design of microchannel reactors.

Originality/value

The design of microchannel reactors with non-uniform catalyst distributions can be used in methane steam reforming to reduce the maximum temperature inside the reactor.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 23 September 2021

Jian Liu, Mengyao Xu, Wenxiong Xi, Jiawen Song, Shibin Luo and Bengt Ake Sunden

Endwall film cooling protects vane endwall by coolant coverage, especially at the leading edge (LE) region and vane-pressure side (PS) junction region. Strong flow impingement and…

Abstract

Purpose

Endwall film cooling protects vane endwall by coolant coverage, especially at the leading edge (LE) region and vane-pressure side (PS) junction region. Strong flow impingement and complex vortexaa structures on the vane endwall cause difficulties for coolant flows to cover properly. This work aims at a full-scale arrangement of film cooling holes on the endwall which improves coolant efficiency in the LE region and vane-PS junction region.

Design/methodology/approach

The endwall film holes are grouped in four-holes constructal patterns. Three ways of arranging the groups are studied: based on the pressure field, the streamlines or the heat transfer field. The computational analysis is done with the k-ω SST model after validating the turbulence model properly.

Findings

By clustering the film cooling holes in four-holes patterns, the ejection of the coolant flow is stronger. The four-holes constructal patterns also improve the local coolant coverage in the “tough” regions, such as the junction region of the PS and the endwall. The arrangement based on streamlines distribution can effectively improve the coolant coverage and the arrangement based on the heat transfer distribution (HTD) has benefits by reducing high-temperature regions on the endwall.

Originality/value

A full-scale endwall film cooling design is presented considering interactions of different film cooling holes. A comprehensive model validation and mesh independence study are provided. The cooling holes pattern on the endwall is designed as four-holes constructal patterns combined with several arrangement choices, i.e. by pressure, by heat transfer and by streamline distributions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 19 March 2021

Dandan Qiu, Lei Luo, Zhiqi Zhao, Songtao Wang, Zhongqi Wang and Bengt Ake Sunden

The purpose of this study is to investigate the effects of film holes’ arrangements and jet Reynolds number on flow structure and heat transfer characteristics of jet impingement…

1079

Abstract

Purpose

The purpose of this study is to investigate the effects of film holes’ arrangements and jet Reynolds number on flow structure and heat transfer characteristics of jet impingement conjugated with film cooling in a semicylinder double wall channel.

Design/methodology/approach

Numerical simulations are used in this research. Streamlines on different sections, skin-friction lines, velocity, wall shear stress and turbulent kinetic energy contours near the concave target wall and vortices in the double channel are presented. Local Nusselt number contours and surface averaged Nusselt numbers are also obtained. Topology analysis is applied to further understand the fluid flow and is used in analyzing the heat transfer characteristics.

Findings

It is found that the arrangement of side films positioned far from the center jets helps to enhance the flow disturbance and heat transfer behind the film holes. The heat transfer uniformity for the case of 55° films arrangement angle is most improved and the thermal performance is the highest in this study.

Originality/value

The film holes’ arrangements effects on fluid flow and heat transfer in an impingement cooled concave channel are conducted. The flow structures in the channel and flow characteristics near target by topology pictures are first obtained for the confined film cooled impingement cases. The heat transfer distributions are analyzed with the flow characteristics. The highest heat transfer uniformity and thermal performance situation is obtained in present work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 21 January 2022

Yong Li, Yingchun Zhang, Gongnan Xie and Bengt Ake Sunden

This paper aims to comprehensively clarify the research status of thermal transport of supercritical aviation kerosene, with particular interests in the effect of cracking on heat…

1281

Abstract

Purpose

This paper aims to comprehensively clarify the research status of thermal transport of supercritical aviation kerosene, with particular interests in the effect of cracking on heat transfer.

Design/methodology/approach

A brief review of current research on supercritical aviation kerosene is presented in views of the surrogate model of hydrocarbon fuels, chemical cracking mechanism of hydrocarbon fuels, thermo-physical properties of hydrocarbon fuels, turbulence models, flow characteristics and thermal performances, which indicates that more efforts need to be directed into these topics. Therefore, supercritical thermal transport of n-decane is then computationally investigated in the condition of thermal pyrolysis, while the ASPEN HYSYS gives the properties of n-decane and pyrolysis products. In addition, the one-step chemical cracking mechanism and SST k-ω turbulence model are applied with relatively high precision.

Findings

The existing surrogate models of aviation kerosene are limited to a specific scope of application and their thermo-physical properties deviate from the experimental data. The turbulence models used to implement numerical simulation should be studied to further improve the prediction accuracy. The thermal-induced acceleration is driven by the drastic density change, which is caused by the production of small molecules. The wall temperature of the combustion chamber can be effectively reduced by this behavior, i.e. the phenomenon of heat transfer deterioration can be attenuated or suppressed by thermal pyrolysis.

Originality/value

The issues in numerical studies of supercritical aviation kerosene are clearly revealed, and the conjugation mechanism between thermal pyrolysis and convective heat transfer is initially presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Access

Only content I have access to

Year

Content type

1 – 5 of 5