Search results

1 – 8 of 8

Abstract

Details

Communicating Climate
Type: Book
ISBN: 978-1-83753-643-6

Article
Publication date: 26 March 2024

Rawan Ramadan, Hassan Ghanem, Jamal M. Khatib and Adel M. ElKordi

The purpose of this paper is to check the feasibility of using biomaterial such as of Phragmites-Australis (PA) in cement paste to achieve sustainable building materials.

Abstract

Purpose

The purpose of this paper is to check the feasibility of using biomaterial such as of Phragmites-Australis (PA) in cement paste to achieve sustainable building materials.

Design/methodology/approach

In this study, cement pastes were prepared by adding locally produced PA fibers in four different volumes: 0%, 0.5%, 1% and 2% for a duration of 180 days. Bottles and prisms were subjected to chemical shrinkage (CS), drying shrinkage (DS), autogenous shrinkage (AS) and expansion tests. Besides, prism specimens were tested for flexural strength and compressive strength. Furthermore, a mathematical model was proposed to determine the variation length change as function of time.

Findings

The experimental findings showed that the mechanical properties of cement paste were significantly improved by the addition of 1% PA fiber compared to other PA mixes. The effect of increasing the % of PA fibers reduces the CS, AS, DS and expansion of cement paste. For example, the addition of 2% PA fibers reduces the CS, expansion, AS and DS at 180 days by 36%, 20%, 13% and 10%, respectively compared to the control mix. The proposed nonlinear model fit to the experimental data is appropriate with R2 values above 0.92. There seems to be a strong positive linear correlation between CS and AS/DS with R2 above 0.95. However, there exists a negative linear correlation between CS and expansion.

Research limitations/implications

The PA used in this study was obtained from one specific location. This can exhibit a limitation as soil type may affect PA properties. Also, one method was used to treat the PA fibers.

Practical implications

The utilization of PA fibers in paste may well reduce the formation of cracks and limit its propagation, thus using a biomaterial such as PA in cementitious systems can be an environmentally friendly option as it will make good use of the waste generated and enhance local employment, thereby contributing toward sustainable development.

Originality/value

To the authors best knowledge, there is hardly any research on the effect of PA on the volume stability of cement paste. Therefore, the research outputs are considered to be original.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 9 January 2024

Yunfei Zou

This study aims to enhance the understanding of fiber-reinforced polymer (FRP) applications in partially confined concrete, with a specific focus on improving economic value and…

Abstract

Purpose

This study aims to enhance the understanding of fiber-reinforced polymer (FRP) applications in partially confined concrete, with a specific focus on improving economic value and load-bearing capacity. The research addresses the need for a more comprehensive analysis of non-uniform vertical strain responses and precise stress–strain models for FRP partially confined concrete.

Design/methodology/approach

DIC and strain gauges were employed to gather data during axial compression tests on FRP partially confined concrete specimens. Finite element analysis using ABAQUS was utilized to model partial confinement concrete with various constraint area ratios, ranging from 0 to 1. Experimental findings and simulation results were compared to refine and validate the stress–strain model.

Findings

The experimental results revealed that specimens exhibited strain responses characterized by either hardening or softening in both vertical and horizontal directions. The finite element analysis accurately reflected the relationship between surface constraint forces and axial strains in the x, y and z axes under different constraint area ratios. A proposed stress–strain model demonstrated high predictive accuracy for FRP partially confined concrete columns.

Practical implications

The stress–strain curves of partially confined concrete, based on Teng's foundation model for fully confined stress–strain behavior, exhibit a high level of predictive accuracy. These findings enhance the understanding of the mechanical behavior of partially confined concrete specimens, which is crucial for designing and assessing FRP confined concrete structures.

Originality/value

This research introduces innovative insights into the superior convenience and efficiency of partial wrapping strategies in the rehabilitation of beam-column joints, surpassing traditional full confinement methods. The study contributes methodological innovation by refining stress–strain models specifically for partially confined concrete, addressing the limitations of existing models. The combination of experimental and simulated assessments using DIC and FEM technologies provides robust empirical evidence, advancing the understanding and optimization of FRP-concrete structure performance. This work holds significance for the broader field of concrete structure reinforcement.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 12 April 2024

Celia Rufo-Martín, Ramiro Mantecón, Geroge Youssef, Henar Miguelez and Jose Díaz-Álvarez

Polymethyl methacrylate (PMMA) is a remarkable biocompatible material for bone cement and regeneration. It is also considered 3D printable but requires in-depth…

Abstract

Purpose

Polymethyl methacrylate (PMMA) is a remarkable biocompatible material for bone cement and regeneration. It is also considered 3D printable but requires in-depth process–structure–properties studies. This study aims to elucidate the mechanistic effects of processing parameters and sterilization on PMMA-based implants.

Design/methodology/approach

The approach comprised manufacturing samples with different raster angle orientations to capitalize on the influence of the filament alignment with the loading direction. One sample set was sterilized using an autoclave, while another was kept as a reference. The samples underwent a comprehensive characterization regimen of mechanical tension, compression and flexural testing. Thermal and microscale mechanical properties were also analyzed to explore the extent of the appreciated modifications as a function of processing conditions.

Findings

Thermal and microscale mechanical properties remained almost unaltered, whereas the mesoscale mechanical behavior varied from the as-printed to the after-autoclaving specimens. Although the mechanical behavior reported a pronounced dependence on the printing orientation, sterilization had minimal effects on the properties of 3D printed PMMA structures. Nonetheless, notable changes in appearance were attributed, and heat reversed as a response to thermally driven conformational rearrangements of the molecules.

Originality/value

This research further deepens the viability of 3D printed PMMA for biomedical applications, contributing to the overall comprehension of the polymer and the thermal processes associated with its implementation in biomedical applications, including personalized implants.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 December 2022

Vimal Kumar Deshmukh, Mridul Singh Rajput and H.K. Narang

The purpose of this paper is to present current state of understanding on jet electrodeposition manufacturing; to compare various experimental parameters and their implication on…

Abstract

Purpose

The purpose of this paper is to present current state of understanding on jet electrodeposition manufacturing; to compare various experimental parameters and their implication on as deposited features; and to understand the characteristics of jet electrodeposition deposition defects and its preventive procedures through available research articles.

Design/methodology/approach

A systematic review has been done based on available research articles focused on jet electrodeposition and its characteristics. The review begins with a brief introduction to micro-electrodeposition and high-speed selective jet electrodeposition (HSSJED). The research and developments on how jet electrochemical manufacturing are clustered with conventional micro-electrodeposition and their developments. Furthermore, this study converges on comparative analysis on HSSJED and recent research trends in high-speed jet electrodeposition of metals, their alloys and composites and presents potential perspectives for the future research direction in the final section.

Findings

Edge defect, optimum nozzle height and controlled deposition remain major challenges in electrochemical manufacturing. On-situ deposition can be used as initial structural material for micro and nanoelectronic devices. Integration of ultrasonic, laser and acoustic source to jet electrochemical manufacturing are current trends that are promising enhanced homogeneity, controlled density and porosity with high precision manufacturing.

Originality/value

This paper discusses the key issue associated to high-speed jet electrodeposition process. Emphasis has been given to various electrochemical parameters and their effect on deposition. Pros and cons of variations in electrochemical parameters have been studied by comparing the available reports on experimental investigations. Defects and their preventive measures have also been discussed. This review presented a summary of past achievements and recent advancements in the field of jet electrochemical manufacturing.

Open Access
Article
Publication date: 8 November 2022

Jacob Mhlanga, Theodore C. Haupt and Claudia Loggia

This paper aims to explore the intellectual structure shaping the circular economy (CE) discourse within the built environment in Africa.

1702

Abstract

Purpose

This paper aims to explore the intellectual structure shaping the circular economy (CE) discourse within the built environment in Africa.

Design/methodology/approach

The study adopted a bibliometric analysis approach to explore the intellectual structure of CE in the built environment in Africa. The authors collected 31 papers published between 2005 and 2021 from the Scopus database and used VOSviewer for data analysis.

Findings

The findings show that there are six clusters shaping the intellectual structure: demolition, material recovery and reuse; waste as a resource; cellulose and agro-based materials; resilience and low-carbon footprint; recycling materials; and the fourth industrial revolution. The two most cited scholars had three publications each, while the top journal was Resources, Conservation and Recycling. The dominant concepts included CE, sustainability, alternative materials, waste management, lifecycle, demolition and climate change. The study concludes that there is low CE research output in Africa, which implies that the concept is either novel or facing resistance.

Research limitations/implications

The data were drawn from one database, Scopus; hence, adoption of alternative databases such as Web of Science, Google Scholar and Dimensions could potentially have yielded a higher number of articles for analysis which potentially would result in different conclusions on the subject understudy.

Originality/value

This study made a significant contribution by articulating the CE intellectual structure in the built environment, identified prominent scholars and academic platforms responsible for promoting circularity in Africa.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 11 April 2024

Namrata Gangil, Arshad Noor Siddiquee, Jitendra Yadav, Shashwat Yadav, Vedant Khare, Neelmani Mittal, Sambhav Sharma, Rittik Srivastava and Sohail Mazher Ali Khan M.A.K. Mohammed

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and…

Abstract

Purpose

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and sizes, and showcase welding avenues. It further extends to highlight the promising friction stir welding as a single solid-state pipe welding procedure. This paper will enable all piping, welding and friction stir welding stakeholders to identify scope for their engagement in a single window.

Design/methodology/approach

The paper is a review paper, and it is mainly structured around sections on materials, sizes and standards for pipes in different sectors and the current welding practice for joining pipe and pipe connections; on the process and principle of friction stir welding (FSW) for pipes; identification of main welding process parameters for the FSW of pipes; effects of process parameters; and a well-carved-out concluding summary.

Findings

A well-carved-out concluding summary of extracts from thoroughly studied research is presented in a structured way in which the avenues for the engagement of FSW are identified.

Research limitations/implications

The implications of the research are far-reaching. The FSW is currently expanding very fast in the welding of flat surfaces and has evolved into a vast number of variants because of its advantages and versatility. The application of FSW is coming up late but catching up fast, and as a late starter, the outcomes of such a review paper may support stake holders to expand the application of this process from pipe welding to pipe manufacturing, cladding and other high-end applications. Because the process is inherently inclined towards automation, its throughput rate is high and it does not need any consumables, the ultimate benefit can be passed on to the industry in terms of financial gains.

Originality/value

To the best of the authors’ knowledge, this is the only review exclusively for the friction stir welding of pipes with a well-organized piping specification detailed about industrial sectors. The current pipe welding practice in each sector has been presented, and the avenues for engaging FSW have been highlighted. The FSW pipe process parameters are characteristically distinguished from the conventional FSW, and the effects of the process parameters have been presented. The summary is concise yet comprehensive and organized in a structured manner.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 11 September 2023

Rong Huang, Guang Yang, Xiaoye Chen and Yuxin Chen

This study aims to investigate the influence of CEO’s only-child status on corporate social responsibility (CSR) practices. It seeks to extend the understanding of upper echelon…

Abstract

Purpose

This study aims to investigate the influence of CEO’s only-child status on corporate social responsibility (CSR) practices. It seeks to extend the understanding of upper echelon theory by examining unexplored CEO characteristics and their impact on CSR decisions.

Design/methodology/approach

The paper uses manually collected CEO family information and Chinese Stock and Market Accounting Research data as a basis to examine the influence of CEOs’ early-life experiences on their engagement in CSR activities. The study applies attachment security theory from developmental psychology and uses upper echelon theory, particularly focusing on CEOs’ only-child status. A comparative analysis of philanthropic donations between CEOs who are only children and those who have siblings is conducted. The study also examines the moderating effects of corporate slack resources and CEO shareholdings.

Findings

Preliminary findings suggest that CEOs who are only children are more likely to engage in CSR compared to their counterparts with siblings. However, the difference in donation amounts between the two groups tends to attenuate with decreased slack resources and increased CEO shareholdings.

Originality/value

To the best of the authors’ knowledge, this research represents the first attempt to investigate being the only child in one’s family and the CSR-related decision of CEOs, which extends the upper echelon theory by introducing the family science theory into the management domain.

Details

Society and Business Review, vol. 19 no. 2
Type: Research Article
ISSN: 1746-5680

Keywords

1 – 8 of 8