Search results

1 – 10 of 166
Article
Publication date: 17 April 2009

Haixia Wang and Dariusz Ceglarek

Dimensional variation management is a major challenge in multi‐station sheet metal assembly processes involving complex products such as automotive body and aircraft fuselage…

Abstract

Purpose

Dimensional variation management is a major challenge in multi‐station sheet metal assembly processes involving complex products such as automotive body and aircraft fuselage assemblies. Very few studies have explored it at a preliminary design phase taking into consideration effects of part deformation on variation propagation, since early design phase involves the development of imprecise design models with scant or incomplete product and process knowledge. The objective of this paper is to present a variation model which can be built into the preliminary design phase taking into consideration all of the existing interactions between flexible parts and tools in multi‐station sheet metal assembly process.

Design/methodology/approach

The paper addresses this problem by first, presenting a beam‐based product and process model which shares the same data structure of the B‐Rep CAD models, and therefore can be embedded in CAD systems for automatic product skeletal design; second, determining the influence of part deformation, for various, differing joining and releasing schemes, on variation propagation; and third, utilizing this information to generate a vector‐based variation propagation model for multistation sheet metal assemblies.

Findings

This paper presents a beam‐based product and process model which shares the same data structure of the B‐Rep CAD models, and therefore can be embedded in CAD systems for automatic product skeletal design; determines the influence of part deformation, for various, differing joining and releasing schemes, on variation propagation; and utilizes this information to generate a vector‐based variation propagation model for multistation sheet metal assemblies.

Originality/value

A truck cab assembly is presented to demonstrate the advantages of the proposed model over the state‐of‐the‐art approach used in industry for sheet metal assemblies.

Details

Assembly Automation, vol. 29 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 7 April 2015

Liang Cheng, Qing Wang, Jiangxiong Li and Yinglin Ke

The aim of this paper is to present a new variation modeling method for fuselage structures in digital large aircraft assembly. The variation accumulated in a large aircraft…

Abstract

Purpose

The aim of this paper is to present a new variation modeling method for fuselage structures in digital large aircraft assembly. The variation accumulated in a large aircraft assembly process will influence the dimensional accuracy and fatigue life of airframes. However, in digital large aircraft assembly, variation analysis and modeling are still unresolved issues.

Design/methodology/approach

An elastic structure model based on beam elements is developed, which is an equivalent idealization of the actual complex structure. The stiffness matrix of the structure model is obtained by summing the stiffness matrices of the beam elements. For each typical stage of the aircraft digital assembly process, including positioning, coordinating, joining and releasing, variation models are built using the simplified structure model with respective loads and boundary conditions.

Findings

Using position errors and manufacturing errors as inputs, the variations for every stage of the assembly process can be calculated using the proposed model.

Practical implications

This method has been used in a large fuselage section assembly project, and the calculated results were shown to be a good prediction of variation in the actual assembly.

Originality/value

Although certain assumptions have been imposed, the proposed method provides a better understanding of the assembly process and creates an analytical foundation for further work on variation control and tolerance optimization.

Details

Assembly Automation, vol. 35 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 3 January 2018

Liang Cheng, Qing Wang, Jiangxiong Li and Yinglin Ke

This paper aims to present a modeling and analysis approach for multi-station aircraft assembly to predict assembly variation. The variation accumulated in the assembly process…

Abstract

Purpose

This paper aims to present a modeling and analysis approach for multi-station aircraft assembly to predict assembly variation. The variation accumulated in the assembly process will influence the dimensional accuracy and fatigue life of airframes. However, in digital large aircraft assembly, variation propagation analysis and modeling are still unresolved issues.

Design/methodology/approach

Based on an elastic structure model and variation model of multistage assembly in one station, the propagation of key characteristics, assembly reference and measurement errors are introduced. Moreover, the reposition and posture coordination are considered as major aspects. The reposition of assembly objects in a different assembly station is described using transformation and blocking of coefficient matrix in finite element equation. The posture coordination of the objects is described using homogeneous matrix multiplication. Then, the variation propagation model and analysis of large aircraft assembly are established using a discrete system diagram.

Findings

This modeling and analysis approach for multi-station aircraft assembly reveals the basic rule of variation propagation between adjacent assembly stations and can be used to predict assembly variation or potential dimension problems at a preliminary assembly phase.

Practical implications

The modeling and analysis approaches have been used in a transport aircraft project, and the calculated results were shown to be a good prediction of variation in the actual assembly.

Originality/value

Although certain simplifications and assumptions have been imposed, the proposed method provides a better understanding of the multi-station assembly process and creates an analytical foundation for further work on variation control and tolerance optimization.

Details

Assembly Automation, vol. 38 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 23 October 2018

Jingfu Liu, Behrooz Jalalahmadi, Y.B. Guo, Michael P. Sealy and Nathan Bolander

Additive manufacturing (AM) is revolutionizing the manufacturing industry due to several advantages and capabilities, including use of rapid prototyping, fabrication of complex…

1066

Abstract

Purpose

Additive manufacturing (AM) is revolutionizing the manufacturing industry due to several advantages and capabilities, including use of rapid prototyping, fabrication of complex geometries, reduction of product development cycles and minimization of material waste. As metal AM becomes increasingly popular for aerospace and defense original equipment manufacturers (OEMs), a major barrier that remains is rapid qualification of components. Several potential defects (such as porosity, residual stress and microstructural inhomogeneity) occur during layer-by-layer processing. Current methods to qualify AM parts heavily rely on experimental testing, which is economically inefficient and technically insufficient to comprehensively evaluate components. Approaches for high fidelity qualification of AM parts are necessary.

Design/methodology/approach

This review summarizes the existing powder-based fusion computational models and their feasibility in AM processes through discrete aspects, including process and microstructure modeling.

Findings

Current progresses and challenges in high fidelity modeling of AM processes are presented.

Originality/value

Potential opportunities are discussed toward high-level assurance of AM component quality through a comprehensive computational tool.

Details

Rapid Prototyping Journal, vol. 24 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 December 2017

Haidong Yu, Chunzhang Zhao, Bin Zheng and Hao Wang

Thin-walled structures inevitably always have manufacturing deviations, which affects the assembly quality of mechanical products. The assembly quality directly determines the…

Abstract

Purpose

Thin-walled structures inevitably always have manufacturing deviations, which affects the assembly quality of mechanical products. The assembly quality directly determines the performances, reliability and service life of the products. To achieve the automatic assembly of large-scale thin-walled structures, the sizing force of the structures with deviations should be calculated, and its assembling ability should be studied before assembly process. The purpose of this study is to establish a precise model to describe the deviations of structures and to study the variation propagation during assembly process.

Design/methodology/approach

Curved thin-walled structures are modeled by using the shell element via the absolute nodal coordinate formulation. Two typical deviation modes of the structure are defined. The generalized elastic force of shell elements with anisotropic materials is deduced based on a continuum mechanics approach to account for the geometric non-linearity. The quasi-static method is introduced to describe the assembly process. The effects of the deviation forms, geometrical parameters of the thin-walled structures and material properties on assembly quality are investigated numerically.

Findings

The geometric non-linearity of structure and anisotropy of materials strongly affect the variation propagation and the assembly quality. The transformation and accumulation effects of the deviations are apparent in the multiple assembly process. The constraints on the structures during assembly can reduce assembly deviation.

Originality/value

The plate element via the absolute nodal coordinate formulation is first introduced to the variation propagation analysis. Two typical shape deviation modes are defined. The elastic force of structures with anisotropic materials is deduced. The variation propagation during the assembly of structures with various geometrical and material parameters is investigated.

Open Access
Article
Publication date: 29 July 2022

Serena Graziosi, Federico Maria Ballo, Flavia Libonati and Sofia Senna

This study aims to investigate the behaviour of soft lattices, i.e. lattices capable of reaching large deformations, and the influence of the printing process on it. The authors…

1503

Abstract

Purpose

This study aims to investigate the behaviour of soft lattices, i.e. lattices capable of reaching large deformations, and the influence of the printing process on it. The authors focused on two cell topologies, the body-centred cubic (BCC) and the Kelvin, characterized by a bending-dominated behaviour relevant to the design of energy-absorbing applications.

Design/methodology/approach

The authors analysed the experimental and numerical behaviour of multiple BCC and Kelvin structures. The authors designed homogenous and graded arrays of different dimensions. The authors compared their technical feasibility with two three-dimensional-printed technologies, such as the fused filament fabrication and the selective laser sintering, choosing thermoplastic polyurethane as the base material.

Findings

The results demonstrate that multiple design aspects determine how the printing process influences the behaviour of soft lattices. Besides, a graded distribution of the material could contribute to fine-tuning this behaviour and mitigating the influence of the printing process.

Practical implications

Despite being less explored than their rigid counterpart, soft lattices are now becoming of great interest, especially when lightweight, wearable and customizable solutions are needed. This study contributes to filling this gap.

Originality/value

Only a few studies analyse design and printing issues of soft lattices due to the intrinsic complexity of printing flexible materials.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 August 2008

Kuigang Yu, Sun Jin, Xinmin Lai and Yanfeng Xing

Material variation is inevitable in volume production, especially the sheet metal thickness variation, which influences part stiffness characteristic. The purpose of this paper is…

1021

Abstract

Purpose

Material variation is inevitable in volume production, especially the sheet metal thickness variation, which influences part stiffness characteristic. The purpose of this paper is to present a new variation model of compliant sheet metal assembly with consideration of material variation influence.

Design/methodology/approach

The theory of computational solid mechanics is used to obtain the relationship between part stiffness matrix and material characteristic. The method of influence coefficients is adopted to deduce the assembly variation model.

Findings

Material variation‐induced influence coefficients to assembly variation are obtained, and a variation model of compliant sheet metal assembly with sources of material variations, part geometric variations and fixture variations is presented. Analysis shows that material variation has an important influence to assembly variations.

Originality/value

A quantitative relationship between assembly variations and material thickness variations is firstly given and a new variation model of compliant sheet metal assembly is presented to help designers to more exactly predict the assembly variation and diagnose variation sources.

Details

Assembly Automation, vol. 28 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 August 2015

E.A.S.K. Fernando and T.S.S. Jayawardana

The tension variations across the width of the weaver's beam cause uneven tension in the fabric formation zone. As a result of the tension variation, the woven fabric tends to…

Abstract

The tension variations across the width of the weaver's beam cause uneven tension in the fabric formation zone. As a result of the tension variation, the woven fabric tends to have fabric defects, such as non-uniform fabric density and differential dye take–up at various places on the fabric. As the warp ends are continuously subjected to varying tensions, warp breakage frequently occurs. As a result, the quality of the fabric produced suffers and there is reduced loom efficiency. However, uniformity in the fabric density is crucial, especially for technical and smart textiles. In this paper, the authors have attempted to model the varyingtensions across different segments of a warp sheet under a set of assumptions and derived a linear model. Furthermore, a prototype of an automatic tension control device is instrumentedwith two different positions which are located one meter apart and allows the tension variations across the warp-sheet to be practically observed. The measured average tension shows that variations in the internal tension on different segments of the warp-sheet can be minimized or even completely eliminated over time. With the implementation of a related experiment, the authors have shown the effectiveness of this automatic tension controller and its strong implications for the industry.

Details

Research Journal of Textile and Apparel, vol. 19 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 7 March 2016

Srinivas Vasista, Alessandro De Gaspari, Sergio Ricci, Johannes Riemenschneider, Hans Peter Monner and Bram van de Kamp

The purpose of this paper is to provide an overview of the design and experimental work of compliant wing and wingtip morphing devices conducted within the EU FP7 project NOVEMOR…

1042

Abstract

Purpose

The purpose of this paper is to provide an overview of the design and experimental work of compliant wing and wingtip morphing devices conducted within the EU FP7 project NOVEMOR and to demonstrate that the optimization tools developed can be used to synthesize compliant morphing devices.

Design/methodology/approach

The compliant morphing devices were “designed-through-optimization”, with the optimization algorithms including Simplex optimization for composite compliant skin design, aerodynamic shape optimization able to take into account the structural behaviour of the morphing skin, continuum-based and load path representation topology optimization methods and multi-objective optimization coupled with genetic algorithm for compliant internal substructure design. Low-speed subsonic wind tunnel testing was performed as an effective means of demonstrating proof-of-concept.

Findings

It was found that the optimization tools could be successfully implemented in the manufacture and testing stage. Preliminary insight into the performance of the compliant structure has been made during the first wind tunnel tests.

Practical implications

The tools in this work further the development of morphing structures, which when implemented in aircraft have potential implications to environmentally friendlier aircrafts.

Originality/value

The key innovations in this paper include the development of a composite skin optimization tool for the design of highly 3D morphing wings and its ensuing manufacture process; the development of a continuum-based topology optimization tool for shape control design of compliant mechanisms considering the stiffness and displacement functions; the use of a superelastic material for the compliant mechanism; and wind tunnel validation of morphing wing devices based on compliant structure technology.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 November 2019

Xun Xu, Haidong Yu, Yunyong Li and Xinmin Lai

The structure stiffness is greatly affected by the fixture constraints during assembly due to the flexibility of large-scale thin-walled structures. The compliant deformation of…

Abstract

Purpose

The structure stiffness is greatly affected by the fixture constraints during assembly due to the flexibility of large-scale thin-walled structures. The compliant deformation of structures is usually not consistent for the non-uniform stiffness in various clamping schemes. The purpose of this paper is to investigate the correlation between the assembly quality and the clamping schemes of structures with various initial deviations and geometrical parameters, which is based on the proposed irregular quadrilateral plate element via absolute nodal coordinate formulation (ANCF).

Design/methodology/approach

Two typical clamping schemes are specified for the large-scale thin-walled structures. Two typical deviation modes are defined in both free and clamping states in the corresponding clamping schemes. The new irregular quadrilateral plate element via ANCF is validated to analyze the compliant deformation of assembled structures. The quasi-static force equilibrium equations are extended considering the factors of clamping constraints and geometric deviations.

Findings

The initial deviations and geometrical parameters strongly affect the assembly deviations of structures in two clamping schemes. The variation tendencies of assembly deviations are demonstrated in details with the circumferential clamping position and axial clamping position in two clamping schemes, providing guidance to optimize the fixture configuration. The assembly quality of structures with deviations can be improved by configuration synthesis of the clamping schemes.

Originality/value

Typical over-constraint clamping schemes and deviation modes in clamping states are defined for large-scale thin-walled structures. The plate element via ANCF is extended to analyze the assembly deviations of thin-walled structures in various clamping schemes. Based on the proposed theoretical model, the effects of clamping schemes and initial deviations on the deformation and assembly deviation propagation of structures are investigated.

Details

Assembly Automation, vol. 40 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of 166