Search results

1 – 10 of 718
Article
Publication date: 12 January 2022

Xushan Zhao, Yuanxun Wang, Haiou Zhang, Runsheng Li, Xi Chen and Youheng Fu

This paper aims to summarize the influence law of hybrid deposited and micro-rolling (HDMR) technology on the bead morphology and overlapping coefficient. A better bead topology…

272

Abstract

Purpose

This paper aims to summarize the influence law of hybrid deposited and micro-rolling (HDMR) technology on the bead morphology and overlapping coefficient. A better bead topology positively supports the overlapping deposited in multi-beads between layers while actively assisting the subsequent layer's deposition in the wire and arc additive manufacturing (WAAM). Hybrid-deposited and micro-rolling (HDMR) additive manufacturing (AM) technology can smooth the weld bead for improved surface quality. However, the micro-rolling process will change the weld bead profile fitting curve to affect the overlapping coefficient.

Design/methodology/approach

Weld bead contours for WAAM and HDMR were extracted using line lasers. A comparison of bead profile curves was conducted to determine the influence law of micro-zone rolling on the welding bead contour and fitting curve. Aiming at the optimized overlapping coefficient of weld bead in HDMR AM, the optimal HDMR overlapping coefficient curve was proposed which varies with the reduction based on the best surface flatness. The mathematical model for overlapping in HDMR was checked by comparing the HDMR weld bead contours under different rolling reductions.

Findings

A fitting function of the bead forming by HDMR AM was proposed based on the law of conservation of mass. The change rule of the HDMR weld bead overlapping spacing with the degree of weld bead rolling reduction was generated using the flat-top transition calculation for this model. Considering the damming-up impact of the first bead, the overlapping coefficient was examined for its effect on layer surface flatness.

Originality/value

Using the predicted overlapping model, the optimal overlapping coefficients for different rolling reductions can be achieved without experiments. These conclusions can encourage the development of HDMR technology.

Details

Rapid Prototyping Journal, vol. 28 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 February 2021

Easir Arafat Papon, Anwarul Haque and Muhammad Ali Rob Sharif

This paper aims to develop a numerical model of bead spreading architecture of a viscous polymer in fused filament fabrication (FFF) process with different nozzle geometry. This…

Abstract

Purpose

This paper aims to develop a numerical model of bead spreading architecture of a viscous polymer in fused filament fabrication (FFF) process with different nozzle geometry. This paper also focuses on the manufacturing feasibility of the nozzles and 3D printing of the molten beads using the developed nozzles.

Design/methodology/approach

The flow of a highly viscous polymer from a nozzle, the melt expansion in free space and the deposition of the melt on a moving platform are captured using the FLUENT volume of fluid (VOF) method based computational fluid dynamics code. The free surface motion of the material is captured in VOF, which is governed by the hydrodynamics of the two-phase flow. The phases involved in the numerical model are liquid polymer and air. A laminar, non-Newtonian and non-isothermal flow is assumed. Under such assumptions, the spreading characteristic of the polymer is simulated with different nozzle-exit geometries. The governing equations are solved on a regular stationary grid following a transient algorithm, where the boundary between the polymer and the air is tracked by piecewise linear interface construction (PLIC) to reconstruct the free surface. The prototype nozzles were also manufactured, and the deposition of the molten beads on a flatbed was performed using a commercial 3D printer. The deposited bead cross-sections were examined through optical microscopic examination, and the cross-sectional profiles were compared with those obtained in the numerical simulations.

Findings

The numerical model successfully predicted the spreading characteristics and the cross-sectional shape of the extruded bead. The cross-sectional shape of the bead varied from elliptical (with circular nozzle) to trapezoidal (with square and star nozzles) where the top and bottom surfaces are significantly flattened (which is desirable to reduce the void spaces in the cross-section). The numerical model yielded a good approximation of the bead cross-section, capturing most of the geometric features of the bead with a reasonable qualitative agreement compared to the experiment. The quantitative comparison of the cross-sectional profiles against experimental observation also indicated a favorable agreement. The significant improvement observed in the bead cross-section with the square and star nozzles is the flattening of the surfaces.

Originality/value

The developed numerical algorithm attempts to address the fundamental challenge of voids and bonding in the FFF process. It presents a new approach to increase the inter-bead bonding and reduce the inter-bead voids in 3D printing of polymers by modifying the bead cross-sectional shape through the modification of nozzle exit-geometry. The change in bead cross-sectional shape from elliptical (circular) to trapezoidal (square and star) cross-section is supposed to increase the contact surface area and inter-bead bonding while in contact with adjacent beads.

Details

Rapid Prototyping Journal, vol. 27 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 January 2021

Shangyong Tang, Guilan Wang, Hao Song, Runsheng Li and Haiou Zhang

Modeling and control of bead geometry in wire and arc additive manufacturing is significant as it affects the whole manufacturing process. The purpose of this paper is to…

Abstract

Purpose

Modeling and control of bead geometry in wire and arc additive manufacturing is significant as it affects the whole manufacturing process. The purpose of this paper is to establish an efficient model to control the bead geometry with fewer experiments in wire and arc additive manufacturing (WAAM).

Design/methodology/approach

A multi-sensor system is established to monitor the process parameters and measure the bead geometry information. A dynamic parameters experimental method is proposed for rapid modeling without dozens of experiments. A deep learning method is used for bead modeling and control. To adaptively control the bead geometry in real-time, a closed-loop control system was developed based on the bead model and in situ monitoring.

Findings

A series of experiments were conducted to train, test and verify the feasibility of the method and system, and the results showed that the proposed method can build the bead model rapidly with high precision, and the closed-loop system can control the forming geometry adaptively.

Originality/value

The proposed modeling method is novel as the experiment number is reduced. The dynamic parameters experimental method is effective with high precision. The closed-loop control system can control the bead geometry in real-time. The forming accuracy is elevated.

Details

Rapid Prototyping Journal, vol. 27 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 September 2019

Yifeng Li, Xunpeng Qin, Qiang Wu, Zeqi Hu and Tan Shao

Robotic wire and arc additive manufacturing (RWAAM) is becoming more and more popular for its capability of fabricating metallic parts with complicated structure. To unlock the…

343

Abstract

Purpose

Robotic wire and arc additive manufacturing (RWAAM) is becoming more and more popular for its capability of fabricating metallic parts with complicated structure. To unlock the potential of 6-DOF industrial robots and improve the power of additive manufacturing, this paper aims to present a method to fabricate curved overhanging thin-walled parts free from turn table and support structures.

Design/methodology/approach

Five groups of straight inclined thin-walled parts with different angles were fabricated with the torch aligned with the inclination angle using RWAAM, and the angle precision was verified by recording the growth of each layer in both horizontal and vertical directions; furthermore, the experimental phenomena was explained with the force model of the molten pool and the forming characteristics was investigated. Based on the results above, an algorithm for fabricating curved overhanging thin-walled part was presented and validated.

Findings

The force model and forming characteristics during the RWAAM process were investigated. Based on the result, the influence of the torch orientation on the weld pool flow was used to control the pool flow, then a practical algorithm for fabricating curved overhanging thin-walled part was proposed and validated.

Originality/value

Regarding the fabrication of curved overhanging thin-walled parts, given the influences of the torch angles on the deposited morphology, porosity formation rate and weld pool flow, the flexibility of 6-DOF industrial robot was fully used to realize instant adjustment of the torch angle. In this paper, the deposition point and torch orientation of each layer of a robotic fabrication path was determined by the contour equation of the curve surface. By adjusting the torch angle, the pool flow was controlled and better forming quality was acquired.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 10 November 2020

Xiangman Zhou, Qihua Tian, Yixian Du, Yancheng Zhang, Xingwang Bai, Yicha Zhang, Haiou Zhang, Congyang Zhang and Youlu Yuan

The purpose of this paper is to find a theoretical reference to adjust the unsymmetrical arc shape and plasma flow of overlapping deposition in wire arc additive manufacturing…

Abstract

Purpose

The purpose of this paper is to find a theoretical reference to adjust the unsymmetrical arc shape and plasma flow of overlapping deposition in wire arc additive manufacturing (WAAM) and ensure the effect of the gas shielding and stable heat and mass transfer in deposition process. The multiphysical numerical simulation and physical experiment are used for validation.

Design/methodology/approach

In this study, welding torch tilt deposition and external parallel magnetic field–assisted deposition are presented to adjust the unsymmetrical arc shape and plasma flow of overlapping deposition, and a three-dimensional numerical model is developed to simulate the arc of torch tilt overlapping deposition and external parallel magnetic field–assisted overlapping deposition.

Findings

The comparison of simulated results indicate that the angle of welding torch tilt equal to 20° and the magnetic flux density of external transverse magnetic field equal to 0.001 Tesla are capable of balancing the electric arc and shielding gas effectively, respectively. The arc profiles captured by a high-speed camera match well with simulated results.

Originality/value

These studies of this paper can provide a theoretical basis and reference for the calibration and optimization of WAAM process parameters.

Details

Rapid Prototyping Journal, vol. 27 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Abstract

Purpose

Traditional gas tungsten arc welding (GTAW) and GTAW-based wire and arc additive manufacturing (WAAM) are notably different. These differences are crucial to the process stability and surface quality in GTAW WAAM. This paper addresses special characteristics and the process control method of GTAW WAAM. The purpose of this paper is to improve the process stability with sensor information fusion in omnidirectional GTAW WAAM process.

Design/methodology/approach

A wire feed strategy is proposed to achieve an omnidirectional GTAW WAAM process. Thus, a model of welding voltage with welding current and arc length is established. An automatic control system fit to the entire GTAW WAAM process is established using both welding voltage and welding current. The effect of several types of commonly used controllers is examined. To assess the validity of this system, an arc length step experiment, various wire feed speed experiments and a square sample experiment were performed.

Findings

The research findings show that the resented wire feed strategy and arc length control system can effectively guarantee the stability of the GTAW WAAM process.

Originality/value

This paper tries to make a foundation work to achieve omnidirectional welding and process stability of GTAW WAAM through wire feed geometry analysis and sensor information fusion control model. The proposed wire feed strategy is implementable and practical, and a novel sensor fusion control method has been developed in the study for varying current GTAW WAAM process.

Details

Rapid Prototyping Journal, vol. 25 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 August 2010

P. Sathiya, S. Aravindan, R. Jeyapaul, P.M. Ajith and A. Noorul Haq

The purpose of this paper is to optimize the gas metal arc welding (GMAW) process input parameters simultaneously considering the multiple output variables (bead width (BW), bead

Abstract

Purpose

The purpose of this paper is to optimize the gas metal arc welding (GMAW) process input parameters simultaneously considering the multiple output variables (bead width (BW), bead height (BH) and depth of penetration (DP)).

Design/methodology/approach

Grey‐based Taguchi approach was used for designing the experiment, L27 orthogonal array was used which composed of three levels and 27 rows, which means that 27 experiments were carried out. Design of experiments was selected based on a four welding parameters with three levels each. The selected welding parameters for this paper are gas flow rate, voltage, travel speed and wire feed rate. The bead‐on‐plate welding trials are carried out on AISI 904L super austenitic stainless steel (SASS) sheets and evaluate the shape of the fusion zone depends upon a number of input parameters.

Findings

Bead‐on‐plate welding of 904L SASS sheet is successfully performed (without any cracks and discontinuity) by GMAW process and the bead profiles are measured. The predicted bead profiles have the better DP and lower BH and BW. It is found that the optimized setting values are improving the response values by 10 per cent.

Originality/value

The optimal welding conditions are identified in order to increase the productivity and minimize the total operating cost. The process input parameters effect is determined under the optimal welding combinations.

Details

Multidiscipline Modeling in Materials and Structures, vol. 6 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 September 2005

A. Sreenathbabu, K.P. Karunakaran and C. Amarnath

This paper discusses the optimization of the process parameters for the hybrid‐layered manufacturing (HLM) process during its weld layer deposition with subsequent surface…

3175

Abstract

Purpose

This paper discusses the optimization of the process parameters for the hybrid‐layered manufacturing (HLM) process during its weld layer deposition with subsequent surface machining in attaining the desired accuracy and contour profile of the deposited weld layer thickness.

Design/methodology/approach

The HLM process integrates the synergic metal inert gas (MIG) – metal active gas (MAG) welding process for depositing the metal layer of a desired slice thickness and perform the computer numerical control (CNC) machining process on the deposited layer to enhance both the surface quality and dimensional accuracy of the deposited layer. For the HLM process the weld bead geometry plays a vital role in determination of the layer thickness, surface quality, build time, heat input into the deposited layer and the hardness attained by the prototype. A feasible weld bead width and heights are to be formulated for the exterior contour weld path deposition and for the interior weld cladding. Thus, Taguchi methodology was employed with minimum number of trails as compared with classical statistical experiments. This study systematically reveals the complex cause‐effect relationships between design parameters and performance.

Findings

Statistical design of experiments using orthogonal arrays and signal‐to‐noise (S/N) ratios are performed to constitute the core of the robust design procedure. Experimental confirmations of the performance characteristic using the derived optimal levels of process parameters are provided to confirm the effectiveness of this approach.

Research limitations/implications

The welding parameters such as current, voltage, arc length, wire feed rates, wire stick‐out distance, shielding gas, filler wire diameter, weld speed, etc. will influence on the deposited weld bead geometry. Further investigations are to be carried out during adaptive layer deposition on the induced thermal stresses and its influence on the hardness of the deposited weld layer.

Originality/value

This paper describes a low cost direct rapid tooling process, HLM. This unique methodology would reduce the cost and time to make molds and dies that are used in batch production.

Details

Rapid Prototyping Journal, vol. 11 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 June 2011

P. Sathiya, M.Y. Abdul Jaleel and D. Katherasan

This study aims to determine the near optimal welding process parameters (beam power (BP), travel speed (TS) and focal position (FP)) using grey relational analysis by…

Abstract

Purpose

This study aims to determine the near optimal welding process parameters (beam power (BP), travel speed (TS) and focal position (FP)) using grey relational analysis by simultaneously considering multiple output parameters (depth of penetration and bead width). Further, the optimized parameters were evaluated through the microstructural characterization and hardness measurements across the weld zone.

Design/methodology/approach

It is appropriate to apply Taguchi's technique to a complex system like welding process. Therefore, this study is made to determine the near optimal welding process parameters (BP, TS and FP) using grey relational analysis by simultaneously considering multiple output parameters (depth of penetration and bead width).

Findings

Taguchi experimental design for determining welding parameters was successful. The hardness of the Argon shielded weld metal was comparatively lesser than the Helium shielded weld metal. The Helium shielded weld metal microstructure comprises of finer grains and higher amounts of equiaxed grains. Argon and Helium shielded weld metal microstructure was endowed with a higher amount of secondary interdendritic austenite phase.

Originality/value

The optimal welding conditions were identified in order to increase the productivity and minimize the total operating cost. The process input parameters effect was determined under the optimal welding combinations.

Details

Multidiscipline Modeling in Materials and Structures, vol. 7 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 11 April 2023

Saratchandra Kundurthi, Felix Tran, Si Chen, Javed Mapkar and Mahmoodul Haq

Material extrusion additive manufacturing processes inevitably produce bead-shaped surface patterns on the walls of parts, which create stress concentrations under load. This…

139

Abstract

Purpose

Material extrusion additive manufacturing processes inevitably produce bead-shaped surface patterns on the walls of parts, which create stress concentrations under load. This study aims to investigate the influence of such stress concentrations on the strength along the build direction (“Z-strength”).

Design/methodology/approach

This work consists of two main parts – an experimental demonstration to show the significance of stress concentrations on the Z-strength, followed by numerical modeling to evaluate the theoretical stress concentration factors (kt) for such shapes. Meso-scale finite element analysis (FEA) was performed to evaluate kt at the roots of the intersecting bead shapes. The critical bead shape parameters influencing kt were identified, and parametric FEA studies were performed on different bead shapes by varying the normalized parameters.

Findings

The experimental results showed that up to a 40% reduction in the effective Z-strength could be attributed only to the presence of surface bead shapes. Bead overhang and root radius were identified as critical shape parameters influencing kt. The results of the parametric FEA studies were used to generate a single empirical equation to determine kt for any bead shape.

Originality/value

Predictive models for Z-strength often focus on crystallization kinetics and polymer chain interdiffusion to predict interlayer adhesion strength. The authors propose that the results of such studies must be combined with surface bead-shape induced stress concentration factors to obtain the combined, “effective” Z-strength.

1 – 10 of 718