Search results

1 – 10 of over 1000
Article
Publication date: 3 October 2023

Jie Lu, Desheng Wu, Junran Dong and Alexandre Dolgui

Credit risk evaluation is a crucial task for banks and non-bank financial institutions to support decision-making on granting loans. Most of the current credit risk methods rely…

Abstract

Purpose

Credit risk evaluation is a crucial task for banks and non-bank financial institutions to support decision-making on granting loans. Most of the current credit risk methods rely solely on expert knowledge or large amounts of data, which causes some problems like variable interactions hard to be identified, models lack interpretability, etc. To address these issues, the authors propose a new approach.

Design/methodology/approach

First, the authors improve interpretive structural model (ISM) to better capture and utilize expert knowledge, then combine expert knowledge with big data and the proposed fuzzy interpretive structural model (FISM) and K2 are used for expert knowledge acquisition and big data learning, respectively. The Bayesian network (BN) obtained is used for forward inference and backward inference. Data from Lending Club demonstrates the effectiveness of the proposed model.

Findings

Compared with the mainstream risk evaluation methods, the authors’ approach not only has higher accuracy and better presents the interaction between risk variables but also provide decision-makers with the best possible interventions in advance to avoid defaults in the financial field. The credit risk assessment framework based on the proposed method can serve as an effective tool for relevant policymakers.

Originality/value

The authors propose a novel credit risk evaluation approach, namely FISM-K2. It is a decision support method that can improve the ability of decision makers to predict risks and intervene in advance. As an attempt to combine expert knowledge and big data, the authors’ work enriches the research on financial risk.

Details

Industrial Management & Data Systems, vol. 123 no. 12
Type: Research Article
ISSN: 0263-5577

Keywords

Open Access
Article
Publication date: 25 January 2023

Omran Alomran, Robin Qiu and Hui Yang

Breast cancer is a global public health dilemma and the most prevalent cancer in the world. Effective treatment plans improve patient survival rates and well-being. The five-year…

Abstract

Purpose

Breast cancer is a global public health dilemma and the most prevalent cancer in the world. Effective treatment plans improve patient survival rates and well-being. The five-year survival rate is often used to develop treatment selection and survival prediction models. However, unlike other types of cancer, breast cancer patients can have long survival rates. Therefore, the authors propose a novel two-level framework to provide clinical decision support for treatment selection contingent on survival prediction.

Design/methodology/approach

The first level classifies patients into different survival periods using machine learning algorithms. The second level has two models with different survival rates (five-year and ten-year). Thus, based on the classification results of the first level, the authors employed Bayesian networks (BNs) to infer the effect of treatment on survival in the second level.

Findings

The authors validated the proposed approach with electronic health record data from the TriNetX Research Network. For the first level, the authors obtained 85% accuracy in survival classification. For the second level, the authors found that the topology of BNs using Causal Minimum Message Length had the highest accuracy and area under the ROC curve for both models. Notably, treatment selection substantially impacted survival rates, implying the two-level approach better aided clinical decision support on treatment selection.

Originality/value

The authors have developed a reference tool for medical practitioners that supports treatment decisions and patient education to identify patient treatment preferences and to enhance patient healthcare.

Details

Digital Transformation and Society, vol. 2 no. 2
Type: Research Article
ISSN: 2755-0761

Keywords

Article
Publication date: 9 September 2022

Siavash Ghorbany, Saied Yousefi and Esmatullah Noorzai

Being an efficient mechanism for the value of money, public–private partnership (PPP) is one of the most prominent approaches for infrastructure construction. Hence, many…

332

Abstract

Purpose

Being an efficient mechanism for the value of money, public–private partnership (PPP) is one of the most prominent approaches for infrastructure construction. Hence, many controversies about the performance effectiveness of these delivery systems have been debated. This research aims to develop a novel performance management perspective by revealing the causal effect of key performance indicators (KPIs) on PPP infrastructures.

Design/methodology/approach

The literature review was used in this study to extract the PPPs KPIs. Experts’ judgment and interviews, as well as questionnaires, were designed to obtain data. Copula Bayesian network (CBN) has been selected to achieve the research purpose. CBN is one of the most potent tools in statistics for analyzing the causal relationship of different elements and considering their quantitive impact on each other. By utilizing this technique and using Python as one of the best programming languages, this research used machine learning methods, SHAP and XGBoost, to optimize the network.

Findings

The sensitivity analysis of the KPIs verified the causation importance in PPPs performance management. This study determined the causal structure of KPIs in PPP projects, assessed each indicator’s priority to performance, and found 7 of them as a critical cluster to optimize the network. These KPIs include innovation for financing, feasibility study, macro-environment impact, appropriate financing option, risk identification, allocation, sharing, and transfer, finance infrastructure, and compliance with the legal and regulatory framework.

Practical implications

Identifying the most scenic indicators helps the private sector to allocate the limited resources more rationally and concentrate on the most influential parts of the project. It also provides the KPIs’ critical cluster that should be controlled and monitored closely by PPP project managers. Additionally, the public sector can evaluate the performance of the private sector more accurately. Finally, this research provides a comprehensive causal insight into the PPPs’ performance management that can be used to develop management systems in future research.

Originality/value

For the first time, this research proposes a model to determine the causal structure of KPIs in PPPs and indicate the importance of this insight. The developed innovative model identifies the KPIs’ behavior and takes a non-linear approach based on CBN and machine learning methods while providing valuable information for construction and performance managers to allocate resources more efficiently.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 1
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 10 June 2022

Priyanka Sharma and J. David Lichtenthal

The purpose of the study is applying and comparing models that predict optimal time for new product exit based on its demand pattern and survivability. This is to decide whether…

Abstract

Purpose

The purpose of the study is applying and comparing models that predict optimal time for new product exit based on its demand pattern and survivability. This is to decide whether or not to continue investing in new product development (NPD).

Design/methodology/approach

The study investigates the optimal time for new product exit within the hi-tech sector by applying three models: the dynamic learning demand model (DLDM), the generalized Bass model (GBM) and the hazard model (HM). Further, for inter- and intra-model comparison, the authors conducted a simulation, considering Weiner and exponential price functions to enhance generalizability.

Findings

While higher price volatility signifies an unstable technology, greater investment into research and development (R&D) and marketing results in higher product adoption rates. Imitators have a more prominent role than innovators in determining the longevity of hi-tech products.

Originality/value

The study conducts a comparison of three different models considering time-varying parameters. There are four scenarios, considering variations in advertising intensity and content, word-of-mouth (WOM) effect, price volatility effect and sunk cost effect.

Details

Benchmarking: An International Journal, vol. 30 no. 5
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 21 September 2022

Imane Mjimer, Es-Saadia Aoula and E.L. Hassan Achouyab

The aim of this study is to predict one of the key performance indicators used to improve continually production systems using machine learning techniques known by the ability to…

Abstract

Purpose

The aim of this study is to predict one of the key performance indicators used to improve continually production systems using machine learning techniques known by the ability to teach the machine to perform complex things as opposed to simple statistical methods by giving this machine the historical dataset, according to the kind of machine learning the authors will use, the machine will be able to predict a new output data from the input data given by the user.

Design/methodology/approach

This work is divided into six sections: In the first section, the state of art for OEE, machine learning, and regression models. In the second section, the methodology, followed by an experimental study conducted in an automotive company specialised in the manufacturing of manual transmissions.

Findings

The three models show a very high accuracy (higher than 99%), a comparison between these three models was done using three indicators, namely mean absolute error (MAE) mean square error (mean squared error and mean absolute percentage error which shows that the best model is the least angle followed by Bayesian Ridge and automatic relevance determination regression.

Originality/value

As the authors can see many works were done in the different production systems for prediction, the most relevant works were done to predict a parameter in the production system such as The prediction of part thickness in aluminium hot stamping process with partition temperature control the prediction of CO2 trapping performance the prediction of crop yield the prediction of lean manufacturing in automotive parts industry the contribution of the work will be to use the machine learning techniques to predict the key performance indicator “used to measure manufacturing efficiency” which is the overall equipment effectiveness used in the authors’ case to measure the improvement of the production system.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Book part
Publication date: 27 June 2023

Richa Srivastava and M A Sanjeev

Several inferential procedures are advocated in the literature. The most commonly used techniques are the frequentist and the Bayesian inferential procedures. Bayesian methods…

Abstract

Several inferential procedures are advocated in the literature. The most commonly used techniques are the frequentist and the Bayesian inferential procedures. Bayesian methods afford inferences based on small data sets and are especially useful in studies with limited data availability. Bayesian approaches also help incorporate prior knowledge, especially subjective knowledge, into predictions. Considering the increasing difficulty in data acquisition, the application of Bayesian techniques can be hugely beneficial to managers, especially in analysing limited data situations like a study of expert opinion. Another factor constraining the broader application of Bayesian statistics in business was computational power requirements and the availability of appropriate analytical tools. However, with the increase in computational power, connectivity and the development of appropriate software programmes, Bayesian applications have become more attractive. This chapter attempts to unravel the applications of the Bayesian inferential procedure in marketing management.

Article
Publication date: 17 November 2023

Ahmad Ebrahimi and Sara Mojtahedi

Warranty-based big data analysis has attracted a great deal of attention because of its key capabilities and role in improving product quality while minimizing costs. Information…

Abstract

Purpose

Warranty-based big data analysis has attracted a great deal of attention because of its key capabilities and role in improving product quality while minimizing costs. Information and details about particular parts (components) repair and replacement during the warranty term, usually stored in the after-sales service database, can be used to solve problems in a variety of sectors. Due to the small number of studies related to the complete analysis of parts failure patterns in the automotive industry in the literature, this paper focuses on discovering and assessing the impact of lesser-studied factors on the failure of auto parts in the warranty period from the after-sales data of an automotive manufacturer.

Design/methodology/approach

The interconnected method used in this study for analyzing failure patterns is formed by combining association rules (AR) mining and Bayesian networks (BNs).

Findings

This research utilized AR analysis to extract valuable information from warranty data, exploring the relationship between component failure, time and location. Additionally, BNs were employed to investigate other potential factors influencing component failure, which could not be identified using Association Rules alone. This approach provided a more comprehensive evaluation of the data and valuable insights for decision-making in relevant industries.

Originality/value

This study's findings are believed to be practical in achieving a better dissection and providing a comprehensive package that can be utilized to increase component quality and overcome cross-sectional solutions. The integration of these methods allowed for a wider exploration of potential factors influencing component failure, enhancing the validity and depth of the research findings.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 16 August 2021

Shilpa Gite, Ketan Kotecha and Gheorghita Ghinea

This study aims to analyze driver risks in the driving environment. A complete analysis of context aware assistive driving techniques. Context awareness in assistive driving by…

285

Abstract

Purpose

This study aims to analyze driver risks in the driving environment. A complete analysis of context aware assistive driving techniques. Context awareness in assistive driving by probabilistic modeling techniques. Advanced techniques using Spatio-temporal techniques, computer vision and deep learning techniques.

Design/methodology/approach

Autonomous vehicles have been aimed to increase driver safety by introducing vehicle control from the driver to Advanced Driver Assistance Systems (ADAS). The core objective of these systems is to cut down on road accidents by helping the user in various ways. Early anticipation of a particular action would give a prior benefit to the driver to successfully handle the dangers on the road. In this paper, the advancements that have taken place in the use of multi-modal machine learning for assistive driving systems are surveyed. The aim is to help elucidate the recent progress and techniques in the field while also identifying the scope for further research and improvement. The authors take an overview of context-aware driver assistance systems that alert drivers in case of maneuvers by taking advantage of multi-modal human processing to better safety and drivability.

Findings

There has been a huge improvement and investment in ADAS being a key concept for road safety. In such applications, data is processed and information is extracted from multiple data sources, thus requiring training of machine learning algorithms in a multi-modal style. The domain is fast gaining traction owing to its applications across multiple disciplines with crucial gains.

Research limitations/implications

The research is focused on deep learning and computer vision-based techniques to generate a context for assistive driving and it would definitely adopt by the ADAS manufacturers.

Social implications

As context-aware assistive driving would work in real-time and it would save the lives of many drivers, pedestrians.

Originality/value

This paper provides an understanding of context-aware deep learning frameworks for assistive driving. The research is mainly focused on deep learning and computer vision-based techniques to generate a context for assistive driving. It incorporates the latest state-of-the-art techniques using suitable driving context and the driver is alerted. Many automobile manufacturing companies and researchers would refer to this study for their enhancements.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 4 April 2024

Richard Kadan, Temitope Seun Omotayo, Prince Boateng, Gabriel Nani and Mark Wilson

This study aimed to address a gap in subcontractor management by focusing on previously unexplored complexities surrounding subcontractor management in developing countries. While…

Abstract

Purpose

This study aimed to address a gap in subcontractor management by focusing on previously unexplored complexities surrounding subcontractor management in developing countries. While past studies concentrated on selection and relationships, this study delved into how effective subcontractor management impacts project success.

Design/methodology/approach

This study used the Bayesian Network analysis approach, through a meticulously developed questionnaire survey refined through a piloting stage involving experienced industry professionals. The survey was ultimately distributed among participants based in Accra, Ghana, resulting in a response rate of approximately 63%.

Findings

The research identified diverse components contributing to subcontractor disruptions, highlighted the necessity of a clear regulatory framework, emphasized the impact of financial and leadership assessments on performance, and underscored the crucial role of main contractors in Integrated Project and Labour Cost Management with Subcontractor Oversight and Coordination.

Originality/value

Previous studies have not considered the challenges subcontractors face in projects. This investigation bridges this gap from multiple perspectives, using Bayesian network analysis to enhance subcontractor management, thereby contributing to the successful completion of construction projects.

Details

Journal of Financial Management of Property and Construction , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1366-4387

Keywords

Article
Publication date: 13 December 2022

Chengxi Yan, Xuemei Tang, Hao Yang and Jun Wang

The majority of existing studies about named entity recognition (NER) concentrate on the prediction enhancement of deep neural network (DNN)-based models themselves, but the…

Abstract

Purpose

The majority of existing studies about named entity recognition (NER) concentrate on the prediction enhancement of deep neural network (DNN)-based models themselves, but the issues about the scarcity of training corpus and the difficulty of annotation quality control are not fully solved, especially for Chinese ancient corpora. Therefore, designing a new integrated solution for Chinese historical NER, including automatic entity extraction and man-machine cooperative annotation, is quite valuable for improving the effectiveness of Chinese historical NER and fostering the development of low-resource information extraction.

Design/methodology/approach

The research provides a systematic approach for Chinese historical NER with a three-stage framework. In addition to the stage of basic preprocessing, the authors create, retrain and yield a high-performance NER model only using limited labeled resources during the stage of augmented deep active learning (ADAL), which entails three steps—DNN-based NER modeling, hybrid pool-based sampling (HPS) based on the active learning (AL), and NER-oriented data augmentation (DA). ADAL is thought to have the capacity to maintain the performance of DNN as high as possible under the few-shot constraint. Then, to realize machine-aided quality control in crowdsourcing settings, the authors design a stage of globally-optimized automatic label consolidation (GALC). The core of GALC is a newly-designed label consolidation model called simulated annealing-based automatic label aggregation (“SA-ALC”), which incorporates the factors of worker reliability and global label estimation. The model can assure the annotation quality of those data from a crowdsourcing annotation system.

Findings

Extensive experiments on two types of Chinese classical historical datasets show that the authors’ solution can effectively reduce the corpus dependency of a DNN-based NER model and alleviate the problem of label quality. Moreover, the results also show the superior performance of the authors’ pipeline approaches (i.e. HPS + DA and SA-ALC) compared to equivalent baselines in each stage.

Originality/value

The study sheds new light on the automatic extraction of Chinese historical entities in an all-technological-process integration. The solution is helpful to effectively reducing the annotation cost and controlling the labeling quality for the NER task. It can be further applied to similar tasks of information extraction and other low-resource fields in theoretical and practical ways.

Details

Aslib Journal of Information Management, vol. 75 no. 3
Type: Research Article
ISSN: 2050-3806

Keywords

1 – 10 of over 1000