Search results

1 – 10 of over 276000
Article
Publication date: 25 May 2012

Fang Ji, Xiongliang Yao and Aman Zhang

The structure‐borne sound generated by power equipment can be isolated effectively through vibration absorber under hull base structures. The practical vibration isolation…

Abstract

Purpose

The structure‐borne sound generated by power equipment can be isolated effectively through vibration absorber under hull base structures. The practical vibration isolation performance is limited due to the weight, size and cost. The dramatic attenuating wave propagation characteristic of hull base without adding weight is essential to the vessel acoustic stealth.

Design/methodology/approach

The characteristics of vibration wave propagated from typical shape base link structures have been investigated according to impedance mismatch and wave conversion in non‐homogeneous structure. The hull base is simplified to three degrees of freedom damped system through the mechanical impedance method. The influence of blocking mass weight, as well as location properties to the base vibration isolation performance have been discussed. Furthermore, the structure‐borne sound design of a typical hull base is carried out.

Findings

The impedance mismatch of the hull base is further increased by the comprehensive use of high transmission loss base link structures, blocking mass as well as damping layer. The effectiveness of structure‐borne sound design is verified through numerical calculation together with underwater model test. The test data show that the noise has been reduced larger than 3 dB.

Originality/value

The paper describes what is believed to be the first application of the high transmission loss base in hull structures based on the literature survey. The method of structure‐borne sound design of a typical hull base can be applied in different types of vessels.

Open Access
Article
Publication date: 19 August 2021

Linh Truong-Hong, Roderik Lindenbergh and Thu Anh Nguyen

Terrestrial laser scanning (TLS) point clouds have been widely used in deformation measurement for structures. However, reliability and accuracy of resulting deformation…

2301

Abstract

Purpose

Terrestrial laser scanning (TLS) point clouds have been widely used in deformation measurement for structures. However, reliability and accuracy of resulting deformation estimation strongly depends on quality of each step of a workflow, which are not fully addressed. This study aims to give insight error of these steps, and results of the study would be guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds. Thus, the main contributions of the paper are investigating point cloud registration error affecting resulting deformation estimation, identifying an appropriate segmentation method used to extract data points of a deformed surface, investigating a methodology to determine an un-deformed or a reference surface for estimating deformation, and proposing a methodology to minimize the impact of outlier, noisy data and/or mixed pixels on deformation estimation.

Design/methodology/approach

In practice, the quality of data point clouds and of surface extraction strongly impacts on resulting deformation estimation based on laser scanning point clouds, which can cause an incorrect decision on the state of the structure if uncertainty is available. In an effort to have more comprehensive insight into those impacts, this study addresses four issues: data errors due to data registration from multiple scanning stations (Issue 1), methods used to extract point clouds of structure surfaces (Issue 2), selection of the reference surface Sref to measure deformation (Issue 3), and available outlier and/or mixed pixels (Issue 4). This investigation demonstrates through estimating deformation of the bridge abutment, building and an oil storage tank.

Findings

The study shows that both random sample consensus (RANSAC) and region growing–based methods [a cell-based/voxel-based region growing (CRG/VRG)] can be extracted data points of surfaces, but RANSAC is only applicable for a primary primitive surface (e.g. a plane in this study) subjected to a small deformation (case study 2 and 3) and cannot eliminate mixed pixels. On another hand, CRG and VRG impose a suitable method applied for deformed, free-form surfaces. In addition, in practice, a reference surface of a structure is mostly not available. The use of a fitting plane based on a point cloud of a current surface would cause unrealistic and inaccurate deformation because outlier data points and data points of damaged areas affect an accuracy of the fitting plane. This study would recommend the use of a reference surface determined based on a design concept/specification. A smoothing method with a spatial interval can be effectively minimize, negative impact of outlier, noisy data and/or mixed pixels on deformation estimation.

Research limitations/implications

Due to difficulty in logistics, an independent measurement cannot be established to assess the deformation accuracy based on TLS data point cloud in the case studies of this research. However, common laser scanners using the time-of-flight or phase-shift principle provide point clouds with accuracy in the order of 1–6 mm, while the point clouds of triangulation scanners have sub-millimetre accuracy.

Practical implications

This study aims to give insight error of these steps, and the results of the study would be guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds.

Social implications

The results of this study would provide guidelines for a practical community to either develop a new workflow or refine an existing one of deformation estimation based on TLS point clouds. A low-cost method can be applied for deformation analysis of the structure.

Originality/value

Although a large amount of the studies used laser scanning to measure structure deformation in the last two decades, the methods mainly applied were to measure change between two states (or epochs) of the structure surface and focused on quantifying deformation-based TLS point clouds. Those studies proved that a laser scanner could be an alternative unit to acquire spatial information for deformation monitoring. However, there are still challenges in establishing an appropriate procedure to collect a high quality of point clouds and develop methods to interpret the point clouds to obtain reliable and accurate deformation, when uncertainty, including data quality and reference information, is available. Therefore, this study demonstrates the impact of data quality in a term of point cloud registration error, selected methods for extracting point clouds of surfaces, identifying reference information, and available outlier, noisy data and/or mixed pixels on deformation estimation.

Details

International Journal of Building Pathology and Adaptation, vol. 40 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 1 June 2004

Martin Zwick and Michael S. Johnson

Reconstructability analysis (RA) is a method for detecting and analyzing the structure of multivariate categorical data. While Jones and his colleagues extended the original…

Abstract

Reconstructability analysis (RA) is a method for detecting and analyzing the structure of multivariate categorical data. While Jones and his colleagues extended the original variable‐based formulation of RA to encompass models defined in terms of system states, their focus was the analysis and approximation of real‐valued functions. In this paper, we separate two ideas that Jones had merged together: the “g to k” transformation and state‐based modeling. We relate the idea of state‐based modeling to established variable‐based RA concepts and methods, including structure lattices, search strategies, metrics of model quality, and the statistical evaluation of model fit for analyses based on sample data. We also discuss the interpretation of state‐based modeling results for both neutral and directed systems, and address the practical question of how state‐based approaches can be used in conjunction with established variable‐based methods.

Details

Kybernetes, vol. 33 no. 5/6
Type: Research Article
ISSN: 0368-492X

Keywords

Book part
Publication date: 8 April 2005

Fredrik von Corswant

This paper deals with the organizing of interactive product development. Developing products in interaction between firms may provide benefits in terms of specialization…

Abstract

This paper deals with the organizing of interactive product development. Developing products in interaction between firms may provide benefits in terms of specialization, increased innovation, and possibilities to perform development activities in parallel. However, the differentiation of product development among a number of firms also implies that various dependencies need to be dealt with across firm boundaries. How dependencies may be dealt with across firms is related to how product development is organized. The purpose of the paper is to explore dependencies and how interactive product development may be organized with regard to these dependencies.

The analytical framework is based on the industrial network approach, and deals with the development of products in terms of adaptation and combination of heterogeneous resources. There are dependencies between resources, that is, they are embedded, implying that no resource can be developed in isolation. The characteristics of and dependencies related to four main categories of resources (products, production facilities, business units and business relationships) provide a basis for analyzing the organizing of interactive product development.

Three in-depth case studies are used to explore the organizing of interactive product development with regard to dependencies. The first two cases are based on the development of the electrical system and the seats for Volvo’s large car platform (P2), performed in interaction with Delphi and Lear respectively. The third case is based on the interaction between Scania and Dayco/DFC Tech for the development of various pipes and hoses for a new truck model.

The analysis is focused on what different dependencies the firms considered and dealt with, and how product development was organized with regard to these dependencies. It is concluded that there is a complex and dynamic pattern of dependencies that reaches far beyond the developed product as well as beyond individual business units. To deal with these dependencies, development may be organized in teams where several business units are represented. This enables interaction between different business units’ resource collections, which is important for resource adaptation as well as for innovation. The delimiting and relating functions of the team boundary are elaborated upon and it is argued that also teams may be regarded as actors. It is also concluded that a modular product structure may entail a modular organization with regard to the teams, though, interaction between business units and teams is needed. A strong connection between the technical structure and the organizational structure is identified and it is concluded that policies regarding the technical structure (e.g. concerning “carry-over”) cannot be separated from the management of the organizational structure (e.g. the supplier structure). The organizing of product development is in itself a complex and dynamic task that needs to be subject to interaction between business units.

Details

Managing Product Innovation
Type: Book
ISBN: 978-1-84950-311-2

Article
Publication date: 18 August 2022

Britto Pari J., Mariammal K. and Vaithiyanathan D.

Filter design plays an essential role in most communication standards. The essential element of the software-defined radio is a channelizer that comprises several channel filters…

Abstract

Purpose

Filter design plays an essential role in most communication standards. The essential element of the software-defined radio is a channelizer that comprises several channel filters. Designing filters with lower complexity, minimized area and enhanced speed is a demanding task in currently prevailing communication standards. This study aims to propose an efficient reconfigurable residue number system (RNS)-based multiply-accumulate (MAC) channel filter for software radio receivers.

Design/methodology/approach

RNS-based pipelined MAC module for the realization of channel finite impulse response (FIR) filter architecture is considered in this work. Further, the use of a single adder and single multiplier for realizing the filter architecture regardless of the number of taps offers effective resource sharing. This design provides significant improvement in speed of operation as well as a reduction in area complexity.

Findings

In this paper, two major tasks have been considered: first, the RNS number conversion is performed in which the integer is converted into several residues. These residues are processed in parallel and are applied to the MAC-FIR filter architecture. Second, the MAC filter architecture involves pipelining, which enhances the speed of operation to a significant extent. Also, the time-sharing-based design incorporates a single partial product-based shift and add multiplier and single adder, which provide a low complex design. The results show that the proposed 16-tap RNS-based pipelined MAC sub-filter achieves significant improvement in speed as well as 89.87% area optimization when examined with the conventional RNS-based FIR filter structure.

Originality/value

The proposed MAC-FIR filter architecture provides good performance in terms of complexity and speed of operation because of the use of the RNS scheme with pipelining and partial product-based shift and adds multiplier and single adder when examining with the conventional designs. The reported architecture can be used in software radios.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 11 February 2021

Yongxing Guo, Min Chen, Li Xiong, Xinglin Zhou and Cong Li

The purpose of this study is to present the state of the art for fiber Bragg grating (FBG) acceleration sensing technologies from two aspects: the principle of the measurement…

Abstract

Purpose

The purpose of this study is to present the state of the art for fiber Bragg grating (FBG) acceleration sensing technologies from two aspects: the principle of the measurement dimension and the principle of the sensing configuration. Some commercial sensors have also been introduced and future work in this field has also been discussed. This paper could provide an important reference for the research community.

Design/methodology/approach

This review is to present the state of the art for FBG acceleration sensing technologies from two aspects: the principle of the measurement dimension (one-dimension and multi-dimension) and the principle of the sensing configuration (beam type, radial vibration type, axial vibration type and other composite structures).

Findings

The current research on developing FBG acceleration sensors is mainly focused on the sensing method, the construction and design of the elastic structure and the design of a new information detection method. This paper hypothesizes that in the future, the following research trends will be strengthened: common single-mode fiber grating of the low cost and high utilization rate; high sensitivity and strength special fiber grating; multi-core fiber grating for measuring single-parameter multi-dimensional information or multi-parameter information; demodulating equipment of low cost, small volume and high sampling frequency.

Originality/value

The principle of the measurement dimension and principle of the sensing configuration for FBG acceleration sensors have been introduced, which could provide an important reference for the research community.

Details

Sensor Review, vol. 41 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 16 August 2021

Suzan Abd El Moneim El Balshy and Mamdouh Ismael

This paper aims to present a theoretical framework which reveals the relationship between job evaluation (JE) and the development of fair wage structure from the organizational…

5847

Abstract

Purpose

This paper aims to present a theoretical framework which reveals the relationship between job evaluation (JE) and the development of fair wage structure from the organizational justice (OJ) perspective. It focuses on analyzing the dimensions of job-based pay structure and the use of multifaceted construct of OJ (procedures, distribution and interaction) to determine how the perceived justice of JE's multi-levels construct contributes to achieve the fairness of wage structure.

Design/methodology/approach

This paper adopts an analytical descriptive approach in terms of explaining the perspectives and viewpoints related to the analysis. This paper is based on examining a theoretical framework provided by the authors based on a theoretical review of literature and a set of empirical evidences.

Findings

The design of a hierarchical wage structure counts on the multidimensional approach of JE which consists of three dimensions (processes, outcomes and social system). In addition, the determination of wage structure fairness is dependent on the assessment of the perceived justice of: JE's procedures, wages distribution and management's treatment with its employees.

Originality/value

This study provides a new theoretical contribution in studying the relationship between JE and the design of fair wage structure. This contribution can be regarded as a theoretical foundation for conducting some empirical and comparative studies in the future. The study affords directive mechanisms to policymakers in order to enhance the fairness of the wage structure across the state.

Details

Journal of Humanities and Applied Social Sciences, vol. 5 no. 1
Type: Research Article
ISSN: 2632-279X

Keywords

Article
Publication date: 8 June 2015

Herbert H. Tsang and Kay C. Wiese

The purpose of this paper is to present a study of the effect of different types of annealing schedules for a ribonucleic acid (RNA) secondary structure prediction algorithm based

Abstract

Purpose

The purpose of this paper is to present a study of the effect of different types of annealing schedules for a ribonucleic acid (RNA) secondary structure prediction algorithm based on simulated annealing (SA).

Design/methodology/approach

An RNA folding algorithm was implemented that assembles the final structure from potential substructures (helixes). Structures are encoded as a permutation of helixes. An SA searches this space of permutations. Parameters and annealing schedules were studied and fine-tuned to optimize algorithm performance.

Findings

In comparing with mfold, the SA algorithm shows comparable results (in terms of F-measure) even with a less sophisticated thermodynamic model. In terms of average specificity, the SA algorithm has provided surpassing results.

Research limitations/implications

Most of the underlying thermodynamic models are too simplistic and incomplete to accurately model the free energy for larger structures. This is the largest limitation of free energy-based RNA folding algorithms in general.

Practical implications

The algorithm offers a different approach that can be used in practice to fold RNA sequences quickly.

Originality/value

The algorithm is one of only two SA-based RNA folding algorithms. The authors use a very different encoding, based on permutation of candidate helixes. The in depth study of annealing schedules and other parameters makes the algorithm a strong contender. Another benefit is that new thermodynamic models can be incorporated with relative ease (which is not the case for algorithms based on dynamic programming).

Details

International Journal of Intelligent Computing and Cybernetics, vol. 8 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 13 May 2020

Ying Xia

This study aims to analyze the dynamic monitoring of deformation damage of steel structure buildings in long-term use. Although the steel structure building has the advantage of…

Abstract

Purpose

This study aims to analyze the dynamic monitoring of deformation damage of steel structure buildings in long-term use. Although the steel structure building has the advantage of high structural strength, it will be deformed after being affected by factors such as corrosion and impact during long-term use, and which will affect building safety, especially the public building facilities. The dynamic monitoring of its security is an indispensable means.

Design/methodology/approach

This paper briefly introduced the principle of building information modeling (BIM)-based steel structure building information monitoring and the dynamic information monitoring system based on this principle. Then the monitoring system was used to analyze an operational steel structure suspension bridge in Xinxiang City, Henan Province, China, and compared it with the monitoring system based on back propagation (BP) neural network.

Findings

The results showed that the fitting degree of the dynamic deformation displacement data processed by BIM-based monitoring system was higher than that processed by BP-based monitoring system. Based on the comprehensive comparison of the dynamic data of all monitoring points, the BIM-based monitoring system had higher accuracy of deformation displacement monitoring and reliability of structural safety evaluation.

Originality/value

In summary, the BIM-based steel structure building monitoring system can effectively monitor the dynamic information of steel structure information.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 28 April 2023

Mohamed Beneldjouzi, Mohamed Hadid and Nasser Laouami

Several studies were made on paired site and soil–structure interaction (SSI) effects, but most of them were site specific. This paper aims to investigate the impact of SSI…

Abstract

Purpose

Several studies were made on paired site and soil–structure interaction (SSI) effects, but most of them were site specific. This paper aims to investigate the impact of SSI effects in conjunction with local soil condition effects on the seismic response of typical multistory low- to mid-rise–reinforced concrete (RC) buildings resting on Algerian regulatory design sites through a global explicit transfer function (TF).

Design/methodology/approach

A preliminary quantification of SSI effects associated with site effects is carried out through a frequency-domain solution based on the concept of rock-to-soil surface displacement TF performed for each design site category. It results from the combination of the TFs of structure, foundation and soil and reflects how seismic waves are amplified due to changes in the geological contrast between the rock and overlying soil deposits. As well, response modification factors, denoting displacement ratios of the building responses within the flexible and site-structure conditions with respect to the fixed-base one, are carried out.

Findings

In the context of Algerian seismic regulation, the study provides a clear vision of how and when site or SSI effects are expected to be influential, as opposed to the fixed-base hypothesis still retained by the current regulation. This helps engineers to be aware of the extent of the expected seismic damage.

Research limitations/implications

The research applies to low- to mid-rise RC buildings within the Algerian seismic regulation, but it may also be expanded to other examples that fall under other seismic regulations.

Practical implications

The response modification ratio is a quantitative approach to assessing response fluctuations. It draws attention to how the roof level drift varies depending on the condition. These results can be used as numerical parameters in structural seismic design when the structure is comparable because they provide useful information about how the two phenomena interact with the structure.

Originality/value

The study goes beyond particular situations dealing with site specific and offers effective indicators and quantitative evaluation of combined site and SSI effects according to the current national seismic provisions, where no indication about site or SSI effects exists.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of over 276000