Search results

1 – 10 of 342
Article
Publication date: 6 February 2024

Somayeh Tamjid, Fatemeh Nooshinfard, Molouk Sadat Hosseini Beheshti, Nadjla Hariri and Fahimeh Babalhavaeji

The purpose of this study is to develop a domain independent, cost-effective, time-saving and semi-automated ontology generation framework that could extract taxonomic concepts…

Abstract

Purpose

The purpose of this study is to develop a domain independent, cost-effective, time-saving and semi-automated ontology generation framework that could extract taxonomic concepts from unstructured text corpus. In the human disease domain, ontologies are found to be extremely useful for managing the diversity of technical expressions in favour of information retrieval objectives. The boundaries of these domains are expanding so fast that it is essential to continuously develop new ontologies or upgrade available ones.

Design/methodology/approach

This paper proposes a semi-automated approach that extracts entities/relations via text mining of scientific publications. Text mining-based ontology (TmbOnt)-named code is generated to assist a user in capturing, processing and establishing ontology elements. This code takes a pile of unstructured text files as input and projects them into high-valued entities or relations as output. As a semi-automated approach, a user supervises the process, filters meaningful predecessor/successor phrases and finalizes the demanded ontology-taxonomy. To verify the practical capabilities of the scheme, a case study was performed to drive glaucoma ontology-taxonomy. For this purpose, text files containing 10,000 records were collected from PubMed.

Findings

The proposed approach processed over 3.8 million tokenized terms of those records and yielded the resultant glaucoma ontology-taxonomy. Compared with two famous disease ontologies, TmbOnt-driven taxonomy demonstrated a 60%–100% coverage ratio against famous medical thesauruses and ontology taxonomies, such as Human Disease Ontology, Medical Subject Headings and National Cancer Institute Thesaurus, with an average of 70% additional terms recommended for ontology development.

Originality/value

According to the literature, the proposed scheme demonstrated novel capability in expanding the ontology-taxonomy structure with a semi-automated text mining approach, aiming for future fully-automated approaches.

Details

The Electronic Library , vol. 42 no. 2
Type: Research Article
ISSN: 0264-0473

Keywords

Article
Publication date: 11 October 2023

Radha Subramanyam, Y. Adline Jancy and P. Nagabushanam

Cross-layer approach in media access control (MAC) layer will address interference and jamming problems. Hybrid distributed MAC can be used for simultaneous voice, data…

Abstract

Purpose

Cross-layer approach in media access control (MAC) layer will address interference and jamming problems. Hybrid distributed MAC can be used for simultaneous voice, data transmissions in wireless sensor network (WSN) and Internet of Things (IoT) applications. Choosing the correct objective function in Nash equilibrium for game theory will address fairness index and resource allocation to the nodes. Game theory optimization for distributed may increase the network performance. The purpose of this study is to survey the various operations that can be carried out using distributive and adaptive MAC protocol. Hill climbing distributed MAC does not need a central coordination system and location-based transmission with neighbor awareness reduces transmission power.

Design/methodology/approach

Distributed MAC in wireless networks is used to address the challenges like network lifetime, reduced energy consumption and for improving delay performance. In this paper, a survey is made on various cooperative communications in MAC protocols, optimization techniques used to improve MAC performance in various applications and mathematical approaches involved in game theory optimization for MAC protocol.

Findings

Spatial reuse of channel improved by 3%–29%, and multichannel improves throughput by 8% using distributed MAC protocol. Nash equilibrium is found to perform well, which focuses on energy utility in the network by individual players. Fuzzy logic improves channel selection by 17% and secondary users’ involvement by 8%. Cross-layer approach in MAC layer will address interference and jamming problems. Hybrid distributed MAC can be used for simultaneous voice, data transmissions in WSN and IoT applications. Cross-layer and cooperative communication give energy savings of 27% and reduces hop distance by 4.7%. Choosing the correct objective function in Nash equilibrium for game theory will address fairness index and resource allocation to the nodes.

Research limitations/implications

Other optimization techniques can be applied for WSN to analyze the performance.

Practical implications

Game theory optimization for distributed may increase the network performance. Optimal cuckoo search improves throughput by 90% and reduces delay by 91%. Stochastic approaches detect 80% attacks even in 90% malicious nodes.

Social implications

Channel allocations in centralized or static manner must be based on traffic demands whether dynamic traffic or fluctuated traffic. Usage of multimedia devices also increased which in turn increased the demand for high throughput. Cochannel interference keep on changing or mitigations occur which can be handled by proper resource allocations. Network survival is by efficient usage of valid patis in the network by avoiding transmission failures and time slots’ effective usage.

Originality/value

Literature survey is carried out to find the methods which give better performance.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Open Access
Article
Publication date: 12 October 2023

V. Chowdary Boppana and Fahraz Ali

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the…

478

Abstract

Purpose

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the I-Optimal design.

Design/methodology/approach

I-optimal design methodology is used to plan the experiments by means of Minitab-17.1 software. Samples are manufactured using Stratsys FDM 400mc and tested as per ISO standards. Additionally, an artificial neural network model was developed and compared to the regression model in order to select an appropriate model for optimisation. Finally, the genetic algorithm (GA) solver is executed for improvement of tensile strength of FDM built PC components.

Findings

This study demonstrates that the selected process parameters (raster angle, raster to raster air gap, build orientation about Y axis and the number of contours) had significant effect on tensile strength with raster angle being the most influential factor. Increasing the build orientation about Y axis produced specimens with compact structures that resulted in improved fracture resistance.

Research limitations/implications

The fitted regression model has a p-value less than 0.05 which suggests that the model terms significantly represent the tensile strength of PC samples. Further, from the normal probability plot it was found that the residuals follow a straight line, thus the developed model provides adequate predictions. Furthermore, from the validation runs, a close agreement between the predicted and actual values was seen along the reference line which further supports satisfactory model predictions.

Practical implications

This study successfully investigated the effects of the selected process parameters - raster angle, raster to raster air gap, build orientation about Y axis and the number of contours - on tensile strength of PC samples utilising the I-optimal design and ANOVA. In addition, for prediction of the part strength, regression and ANN models were developed. The selected ANN model was optimised using the GA-solver for determination of optimal parameter settings.

Originality/value

The proposed ANN-GA approach is more appropriate to establish the non-linear relationship between the selected process parameters and tensile strength. Further, the proposed ANN-GA methodology can assist in manufacture of various industrial products with Nylon, polyethylene terephthalate glycol (PETG) and PET as new 3DP materials.

Details

International Journal of Industrial Engineering and Operations Management, vol. 6 no. 2
Type: Research Article
ISSN: 2690-6090

Keywords

Article
Publication date: 10 April 2024

Adekunle Sabitu Oyegoke, Saheed Ajayi, Muhammad Azeem Abbas and Stephen Ogunlana

The lack of a proper register to store, match and display information on the adapted property has led to a waste of resources and prolonged delays in matching the disabled and…

Abstract

Purpose

The lack of a proper register to store, match and display information on the adapted property has led to a waste of resources and prolonged delays in matching the disabled and elderly people with appropriate properties. This paper presents the development of a Housing Adaptations Register with user-matching functionalities for different mobility categories. The developed system accurately captures and documents adapted home information to facilitate the automated matching of disabled/aged applicants needing an adapted home with suitable property using banding, mobility and suitability index.

Design/methodology/approach

A theoretical review was conducted to identify parameters and develop adaptations register construct. A survey questionnaire approach to rate the 111 parameters in the register as either moderate, desirable or essential before system development and application. The system development relied on DSS modelling to support data-driven decision-making based on the decision table method to represent property information for implementing the decision process. The system is validated through a workshop, four brainstorming sessions and three focus group exercises.

Findings

Development of a choice-based system that enables the housing officers or the Housing Adaptations Register coordinators to know the level of adaptation to properties and match properties quickly with the applicants based on their mobility status. The merits of the automated system include the development of a register to capture in real-time adapted home information to facilitate the automated matching of disabled/aged applicants. A “choice-based” system that can map and suggest a property that can easily be adapted and upgraded from one mobility band to the other.

Practical implications

The development of a housing adaptation register helps social housing landlords to have a real-time register to match, map and upgrade properties for the most vulnerable people in our society. It saves time and money for the housing associations and the local authorities through stable tenancy for adapted homes. Potentially, it will promote the independence of aged and disabled people and can reduce their dependence on social and healthcare services.

Originality/value

This system provides the local authorities with objective and practical tools that may be used to assess, score, prioritise and select qualified people for appropriate accommodation based on their needs and mobility status. It will provide a record of properties adapted with their features and ensure that matching and eligibility decisions are consistent and uniform.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 26 September 2023

Mohammed Ayoub Ledhem and Warda Moussaoui

This paper aims to apply several data mining techniques for predicting the daily precision improvement of Jakarta Islamic Index (JKII) prices based on big data of symmetric…

Abstract

Purpose

This paper aims to apply several data mining techniques for predicting the daily precision improvement of Jakarta Islamic Index (JKII) prices based on big data of symmetric volatility in Indonesia’s Islamic stock market.

Design/methodology/approach

This research uses big data mining techniques to predict daily precision improvement of JKII prices by applying the AdaBoost, K-nearest neighbor, random forest and artificial neural networks. This research uses big data with symmetric volatility as inputs in the predicting model, whereas the closing prices of JKII were used as the target outputs of daily precision improvement. For choosing the optimal prediction performance according to the criteria of the lowest prediction errors, this research uses four metrics of mean absolute error, mean squared error, root mean squared error and R-squared.

Findings

The experimental results determine that the optimal technique for predicting the daily precision improvement of the JKII prices in Indonesia’s Islamic stock market is the AdaBoost technique, which generates the optimal predicting performance with the lowest prediction errors, and provides the optimum knowledge from the big data of symmetric volatility in Indonesia’s Islamic stock market. In addition, the random forest technique is also considered another robust technique in predicting the daily precision improvement of the JKII prices as it delivers closer values to the optimal performance of the AdaBoost technique.

Practical implications

This research is filling the literature gap of the absence of using big data mining techniques in the prediction process of Islamic stock markets by delivering new operational techniques for predicting the daily stock precision improvement. Also, it helps investors to manage the optimal portfolios and to decrease the risk of trading in global Islamic stock markets based on using big data mining of symmetric volatility.

Originality/value

This research is a pioneer in using big data mining of symmetric volatility in the prediction of an Islamic stock market index.

Details

Journal of Modelling in Management, vol. 19 no. 3
Type: Research Article
ISSN: 1746-5664

Keywords

Open Access
Article
Publication date: 9 January 2024

Yadong Liu, Nathee Naktnasukanjn, Anukul Tamprasirt and Tanarat Rattanadamrongaksorn

Bitcoin (BTC) is significantly correlated with global financial assets such as crude oil, gold and the US dollar. BTC and global financial assets have become more closely related…

Abstract

Purpose

Bitcoin (BTC) is significantly correlated with global financial assets such as crude oil, gold and the US dollar. BTC and global financial assets have become more closely related, particularly since the outbreak of the COVID-19 pandemic. The purpose of this paper is to formulate BTC investment decisions with the aid of global financial assets.

Design/methodology/approach

This study suggests a more accurate prediction model for BTC trading by combining the dynamic conditional correlation generalized autoregressive conditional heteroscedasticity (DCC-GARCH) model with the artificial neural network (ANN). The DCC-GARCH model offers significant input information, including dynamic correlation and volatility, to the ANN. To analyze the data effectively, the study divides it into two periods: before and during the COVID-19 outbreak. Each period is then further divided into a training set and a prediction set.

Findings

The empirical results show that BTC and gold have the highest positive correlation compared with crude oil and the USD, while BTC and the USD have a dynamic and negative correlation. More importantly, the ANN-DCC-GARCH model had a cumulative return of 318% before the outbreak of the COVID-19 pandemic and can decrease loss by 50% during the COVID-19 pandemic. Moreover, the risk-averse can turn a loss into a profit of about 20% in 2022.

Originality/value

The empirical analysis provides technical support and decision-making reference for investors and financial institutions to make investment decisions on BTC.

Details

Asian Journal of Economics and Banking, vol. 8 no. 1
Type: Research Article
ISSN: 2615-9821

Keywords

Article
Publication date: 1 April 2024

Zeyang Zhou and Jun Huang

This study aims to learn the dynamic radar cross-section (RCS) of a deflection air brake.

Abstract

Purpose

This study aims to learn the dynamic radar cross-section (RCS) of a deflection air brake.

Design/methodology/approach

The aircraft model with delta wing, V-shaped tail and blended wing body is designed, and high-precision unstructured grid technology is used to deal with the surface of air brake and fuselage. The calculation method based on multiple tracking and dynamic scattering is presented to calculate RCS.

Findings

The fuselage has a low scattering level, and the opening air brake will bring obvious dynamic RCS effects to itself and the whole machine. The average indicator of air brake RCS can be lower than –0.6 dBm2 under the tail azimuth, while that of forward and lateral direction is lower. The mean RCS of fuselage is obviously higher than that of air brake, while the deflected air brake and its cabin can still provide strong scattering sources at some azimuths. When the air brake is opening, the change amplitude of the aircraft forward RCS can exceed 19.81 dBm2.

Practical implications

This research has practical significance for the dynamic electromagnetic scattering analysis and stealth design of the air brake.

Originality/value

The calculation method for aircraft RCS considering air brake dynamic deflection has been established.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 April 2024

Vaishali Rajput, Preeti Mulay and Chandrashekhar Madhavrao Mahajan

Nature’s evolution has shaped intelligent behaviors in creatures like insects and birds, inspiring the field of Swarm Intelligence. Researchers have developed bio-inspired…

Abstract

Purpose

Nature’s evolution has shaped intelligent behaviors in creatures like insects and birds, inspiring the field of Swarm Intelligence. Researchers have developed bio-inspired algorithms to address complex optimization problems efficiently. These algorithms strike a balance between computational efficiency and solution optimality, attracting significant attention across domains.

Design/methodology/approach

Bio-inspired optimization techniques for feature engineering and its applications are systematically reviewed with chief objective of assessing statistical influence and significance of “Bio-inspired optimization”-based computational models by referring to vast research literature published between year 2015 and 2022.

Findings

The Scopus and Web of Science databases were explored for review with focus on parameters such as country-wise publications, keyword occurrences and citations per year. Springer and IEEE emerge as the most creative publishers, with indicative prominent and superior journals, namely, PLoS ONE, Neural Computing and Applications, Lecture Notes in Computer Science and IEEE Transactions. The “National Natural Science Foundation” of China and the “Ministry of Electronics and Information Technology” of India lead in funding projects in this area. China, India and Germany stand out as leaders in publications related to bio-inspired algorithms for feature engineering research.

Originality/value

The review findings integrate various bio-inspired algorithm selection techniques over a diverse spectrum of optimization techniques. Anti colony optimization contributes to decentralized and cooperative search strategies, bee colony optimization (BCO) improves collaborative decision-making, particle swarm optimization leads to exploration-exploitation balance and bio-inspired algorithms offer a range of nature-inspired heuristics.

Article
Publication date: 6 March 2024

Ruoxing Wang, Shoukun Wang, Junfeng Xue, Zhihua Chen and Jinge Si

This paper aims to investigate an autonomous obstacle-surmounting method based on a hybrid gait for the problem of crossing low-height obstacles autonomously by a six wheel-legged…

Abstract

Purpose

This paper aims to investigate an autonomous obstacle-surmounting method based on a hybrid gait for the problem of crossing low-height obstacles autonomously by a six wheel-legged robot. The autonomy of obstacle-surmounting is reflected in obstacle recognition based on multi-frame point cloud fusion.

Design/methodology/approach

In this paper, first, for the problem that the lidar on the robot cannot scan the point cloud of low-height obstacles, the lidar is driven to rotate by a 2D turntable to obtain the point cloud of low-height obstacles under the robot. Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping algorithm, fast ground segmentation algorithm and Euclidean clustering algorithm are used to recognize the point cloud of low-height obstacles and obtain low-height obstacle in-formation. Then, combined with the structural characteristics of the robot, the obstacle-surmounting action planning is carried out for two types of obstacle scenes. A segmented approach is used for action planning. Gait units are designed to describe each segment of the action. A gait matrix is used to describe the overall action. The paper also analyzes the stability and surmounting capability of the robot’s key pose and determines the robot’s surmounting capability and the value scheme of the surmounting control variables.

Findings

The experimental verification is carried out on the robot laboratory platform (BIT-6NAZA). The obstacle recognition method can accurately detect low-height obstacles. The robot can maintain a smooth posture to cross low-height obstacles, which verifies the feasibility of the adaptive obstacle-surmounting method.

Originality/value

The study can provide the theory and engineering foundation for the environmental perception of the unmanned platform. It provides environmental information to support follow-up work, for example, on the planning of obstacles and obstacles.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 9 April 2024

Lu Wang, Jiahao Zheng, Jianrong Yao and Yuangao Chen

With the rapid growth of the domestic lending industry, assessing whether the borrower of each loan is at risk of default is a pressing issue for financial institutions. Although…

Abstract

Purpose

With the rapid growth of the domestic lending industry, assessing whether the borrower of each loan is at risk of default is a pressing issue for financial institutions. Although there are some models that can handle such problems well, there are still some shortcomings in some aspects. The purpose of this paper is to improve the accuracy of credit assessment models.

Design/methodology/approach

In this paper, three different stages are used to improve the classification performance of LSTM, so that financial institutions can more accurately identify borrowers at risk of default. The first approach is to use the K-Means-SMOTE algorithm to eliminate the imbalance within the class. In the second step, ResNet is used for feature extraction, and then two-layer LSTM is used for learning to strengthen the ability of neural networks to mine and utilize deep information. Finally, the model performance is improved by using the IDWPSO algorithm for optimization when debugging the neural network.

Findings

On two unbalanced datasets (category ratios of 700:1 and 3:1 respectively), the multi-stage improved model was compared with ten other models using accuracy, precision, specificity, recall, G-measure, F-measure and the nonparametric Wilcoxon test. It was demonstrated that the multi-stage improved model showed a more significant advantage in evaluating the imbalanced credit dataset.

Originality/value

In this paper, the parameters of the ResNet-LSTM hybrid neural network, which can fully mine and utilize the deep information, are tuned by an innovative intelligent optimization algorithm to strengthen the classification performance of the model.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of 342