Search results

1 – 10 of 299
Article
Publication date: 12 February 2021

Shijie Dai, Shining Li, Wenbin Ji, Zhenlin Sun and Yufeng Zhao

This study aims to realize the constant force grinding of automobile wheel hub.

Abstract

Purpose

This study aims to realize the constant force grinding of automobile wheel hub.

Design/methodology/approach

A force control strategy of backstepping + proportion integration differentiation (PID) is proposed. The grinding end effector is installed on the flange of the robot. The robot controls the position and posture of the grinding end actuator and the grinding end actuator controls the grinding force output. First, the modeling and analysis of the grinding end effector are carried out, and then the backstepping + PID method is adopted to control the grinding end effector to track the expected grinding force. Finally, the feasibility of the proposed method is verified by simulation and experiment.

Findings

The simulation and experimental results show that the backstepping + PID strategy can track the expected force quickly, and improve the dynamic response performance of the system and the quality of grinding and polishing of automobile wheel hub.

Research limitations/implications

The mathematical model is based on the pneumatic system and ideal gas, and ignores the influence of friction in the working process of the cylinder, so the mathematical model proposed in this study has certain limitations. A new control strategy is proposed, which is not only used to control the grinding force of automobile wheels, but also promotes the development of industrial control.

Social implications

The automatic constant force grinding of automobile wheel hub is realized, and the manpower is liberated.

Originality/value

First, the modeling and analysis of the grinding end effector are carried out, and then the backstepping + PID method is adopted to control the grinding end effector to track the expected grinding force. The nonlinear model of the system is controlled by backstepping method, and in the process, the linear system composed of errors is obtained, and then the linear system is controlled by PID to realize the combination of backstepping and PID control.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 May 2010

A. Boucheta, I.K. Bousserhane, A. Hazzab, B. Mazari and M.K. Fellah

The purpose of this paper is to propose mover position control of linear induction motor (LIM) using an adaptive backstepping approach based on field orientation.

Abstract

Purpose

The purpose of this paper is to propose mover position control of linear induction motor (LIM) using an adaptive backstepping approach based on field orientation.

Design/methodology/approach

First, the indirect field‐oriented control LIM is derived. Then, an adaptive backstepping approach based on field‐oriented control of LIM is proposed to compensate the uncertainties which occur in the control. Mover position amplitude tracking objective is formulated, under the assumption of unknown total mass of the moving element, viscous friction, and load force, so that the position regulation is achieved.

Findings

The effectiveness and robustness of the proposed control scheme are verified by numerical simulation using Matlab/Simulink model. The numerical validation results of the proposed scheme have presented good transient control performances and robustness to uncertainties compared to the conventional backstepping control design.

Originality/value

The paper presents an adaptive backstepping approach for LIM control that achieves mover position amplitude tracking objective under mechanical parameter variation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 March 2023

Yaohua Shen and Mou Chen

This study aims to achieve the post-stall pitching maneuver (PSPM) and decrease the deflection frequency of aircraft actuators controlled by the robust backstepping method based…

Abstract

Purpose

This study aims to achieve the post-stall pitching maneuver (PSPM) and decrease the deflection frequency of aircraft actuators controlled by the robust backstepping method based on event-triggered mechanism (ETM), nonlinear disturbance observer (NDO) and dynamic surface control (DSC) techniques.

Design/methodology/approach

To estimate unsteady aerodynamic disturbances (UADs) to suppress their adverse effects, the NDO is designed. To avoid taking the derivative of the virtual control law directly and eliminate the coupling term of the system states and dynamic surface errors in the stability analysis, an improved DSC is developed. Combined with the NDO and DSC techniques, a robust backstepping method is proposed to achieve the PSPM. Furthermore, to decrease the deflection frequency of the aircraft actuators, a state-dependent ETM is introduced.

Findings

An ETM-and-NDO-based backstepping method with an improved DSC technique is developed to achieve the PSPM and decrease the deflection frequency of aircraft actuators. And simulation results are presented to verify the effectiveness of the proposed paper.

Originality/value

Few studies have been conducted on the control of the PSPM in which the lateral and longitudinal attitude dynamics are coupled with each other considering the UADs. Moreover, the mechanism that can decrease the deflection frequency of aircraft actuators is rarely developed in existing research. This study proposes an ETM-and-NDO-based backstepping scheme to address these problems with satisfactory performance of the PSPM.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 December 2021

Shijie Dai, Yufeng Zhao, Wenbin Ji, Jiaheng Mu and Fengbao Hu

This paper aims to present a control method to realize the constant force grinding of automobile wheel hub.

Abstract

Purpose

This paper aims to present a control method to realize the constant force grinding of automobile wheel hub.

Design/methodology/approach

A constant force control strategy combined by extended state observer (ESO) and backstepping control is proposed. ESO is used to estimate the total disturbance to improve the anti-interference and stability of the system and Backstepping control is used to improve the response speed of the system.

Findings

The simulation and grinding experimental results show that, compared with the proportional integral differential control and active disturbance rejection control, the designed controller can improve the dynamic response performance and anti-interference ability of the system and can quickly track the expected force and improve the grinding quality of the hub surface.

Originality/value

The main contribution of this paper lies in the proposed of a new constant force control strategy, which significantly improved the stability and precision of grinding force.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 September 2015

Mohd Ariffanan Mohd Basri, Abdul Rashid Husain and Kumeresan A. Danapalasingam

The purpose of this paper is to propose a new approach for robust control of an autonomous quadrotor unmanned aerial vehicle (UAV) in automatic take-off, hovering and landing…

Abstract

Purpose

The purpose of this paper is to propose a new approach for robust control of an autonomous quadrotor unmanned aerial vehicle (UAV) in automatic take-off, hovering and landing mission and also to improve the stabilizing performance of the quadrotor with inherent time-varying disturbance.

Design/methodology/approach

First, the dynamic model of the aerial vehicle is mathematically formulated. Then, a combination of a nonlinear backstepping scheme with the intelligent fuzzy system as a new key idea to generate a robust controller is designed for the stabilization and altitude tracking of the vehicle. For the problem of determining the backstepping control parameters, a new heuristic algorithm, namely, Gravitational Search Algorithm has been used.

Findings

The control law design utilizes the backstepping control methodology that uses Lyapunov function which can guarantee the stability of the nominal model system, whereas the intelligent system is used as a compensator to attenuate the effects caused by external disturbances. Simulation results demonstrate that the proposed control scheme can achieve favorable control performances for automatic take-off, hovering and landing mission of quadrotor UAV even in the presence of unknown perturbations.

Originality/value

This paper propose a new robust control design approach which incorporates the backstepping control with fuzzy system for quadrotor UAV with inherent time-varying disturbance. The originality of this work relies on the technique to compensate the disturbances acting on the quadrotor UAV. In this new approach, the fuzzy system is introduced as an auxiliary control effort to compensate the effect of disturbances. Because the proposed control technique has the capability of robustness against disturbance, thus, it is also suitable to be applied for a broad class of uncertain nonlinear systems.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 3 July 2017

Yosra Rkhissi-Kammoun, Jawhar Ghommam, Moussa Boukhnifer and Faiçal Mnif

This paper aims to address the speed and flux tracking problem of an induction motor (IM) drive that propels an electric vehicle (EV). A new continuous control law is developed…

Abstract

Purpose

This paper aims to address the speed and flux tracking problem of an induction motor (IM) drive that propels an electric vehicle (EV). A new continuous control law is developed for an IM drive by using the backstepping design associated with the Robust Integral Sign of the Error (RISE) technique.

Design/methodology/approach

First, the rotor field-oriented IM dynamic model is derived. Then, a RISE-backstepping approach is proposed to compensate for the load torque disturbance under the assumptions that the disturbances are C2 class functions with bounded time derivatives.

Findings

The numerical validation results have presented good control performances in terms of speed and flux reference tracking. It is also robust against load disturbances rejection and IM parameters variation compared to the conventional Field-Oriented Control design. Besides, the asymptotic stability and the boundedness of the closed-loop signals is guaranteed in the context of Lyapunov.

Originality/value

A very relevant strategy based on a conjunction of the backstepping design with the RISE technique is proposed for an IM drive. The approach remains simple and can be scaled to different applications.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2022

Anukaran Khanna, Neelaksh Singh and Bijoy K. Mukherjee

Unmanned aerial vehicles (UAVs) have wide applications in surveillance and reconnaissance without risking human life. Due to unbalanced payload distribution or in-flight…

Abstract

Purpose

Unmanned aerial vehicles (UAVs) have wide applications in surveillance and reconnaissance without risking human life. Due to unbalanced payload distribution or in-flight deployment, UAVs may undergo lateral center of gravity (c.g.) variations resulting in an asymmetric dynamic having significant longitudinal and lateral/directional coupling and hence more pronounced nonlinearity. Therefore, automatic control of UAVs becomes extremely difficult when it is forced to perform maneuvers under such imbalance in lateral mass distribution. The purpose of this paper is to design adaptive nonlinear control so that the UAV can perform some useful lateral/directional maneuver under lateral c.g. uncertainty.

Design/methodology/approach

First the nominal lateral/directional dynamics of a fixed-wing UAV is framed into strict feedback form and then the block backstepping approach is used to design the controller to execute horizontal turn and aileron roll maneuvers under no lateral c.g. variation. Thereafter, an adaptive block backstepping controller is designed to adapt to uncertainty in lateral c.g. position considering an approximate model of the asymmetric dynamics. The proposed adaptive scheme is validated against the same two maneuvers as considered for the nominal case.

Findings

First it is shown that the lateral/directional dynamics of a UAV can be converted to a block strict feedback form for executing some lateral/directional maneuvers. However, it was observed that the maneuver performance suffers significant performance degradation under lateral c.g. variations. To mitigate this issue, a simple and computationally inexpensive adaptive block backstepping scheme is proposed and validated. The adaptation law is further proved to be able to asymptotically estimate the actual c.g. location of the UAV.

Practical implications

The proposed control scheme allows the UAV to automatically adapt to lateral c.g. variations so that the intended maneuvers are performed without any noticeable loss in maneuver performance.

Originality/value

There are very few works available in the literature that address nonlinear control designs for executing specific lateral/directional maneuvers and, moreover, they consider symmetric UAVs or aircraft only. This paper addresses the practical problem of autonomous maneuvering for UAVs with unbalanced lateral mass distribution leading to shift of c.g. out of its plane of symmetry.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 December 2018

Avadh Pati and Richa Negi

The stability and input voltage saturation is a common problem associated with an active magnetic bearing (AMB) system. The purpose of this paper is to design a control scheme…

Abstract

Purpose

The stability and input voltage saturation is a common problem associated with an active magnetic bearing (AMB) system. The purpose of this paper is to design a control scheme that stabilizes the single degree of freedom AMB system and also tackle the problem of input voltage saturation in the AMB system.

Design/methodology/approach

The proposed control technique is a combination of two separate control schemes. First, the Backstepping control scheme is designed to stabilize and control the AMB system and then Chebyshev neural network (CNN)-based compensator is designed to tackle the input voltage saturation when the system control action is saturated.

Findings

The mathematical and simulation results are presented to validate the effectiveness of proposed methodology for single-degree freedom AMB system.

Originality/value

This paper introduces a CNN-based compensator with Backstepping control strategy to stabilize and tackle the problem of input voltage saturation in the 1-DOF AMB systems.

Details

World Journal of Engineering, vol. 15 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 25 February 2014

Long Thang Mai and Nan Yao Wang

The purpose of this paper is to improve the flexibility and tracking errors of the controllers-based neural networks (NNs) for mobile manipulator robot (MMR) in the presence of…

Abstract

Purpose

The purpose of this paper is to improve the flexibility and tracking errors of the controllers-based neural networks (NNs) for mobile manipulator robot (MMR) in the presence of time-varying uncertainties.

Design/methodology/approach

The conventional backstepping force/motion control is developed by the wavelet fuzzy CMAC neural networks (WFCNNs) (for mobile-manipulator robot). The proposed WFCNNs are applied in the tracking-position-backstepping controller to deal with the uncertain dynamics of the controlled system. In addition, an adaptive robust compensator is proposed to eliminate the inevitable approximation errors, uncertain disturbances, and relax the requirement for prior knowledge of the controlled system. Besides, the position tracking controller, an adaptive robust constraint-force is also considered. The online-learning algorithms of the control parameters (WFCNNs, robust term and constraint-force controller) are obtained by using the Lyapunov stability theorem.

Findings

The design of the proposed method is determined by the Lyapunov theorem such that the stability and robustness of the control-system are guaranteed.

Originality/value

The WFCNNs are more the generalized networks that can overcome the constant out-weight problem of the conventional fuzzy cerebellar model articulation controller (FCMAC), or can converge faster, give smaller approximation errors and size of networks in comparison with FNNs/NNs. In addition, an intelligent-control system by inheriting the advantage of the conventional backstepping-control-system is proposed to achieve the high-position tracking for the MMR control system in the presence of uncertainties variation.

Article
Publication date: 2 May 2017

Seyed Hamed Seyedipour, Mohsen Fathi Jegarkandi and Saeed Shamaghdari

The purpose of this paper is to design an adaptive nonlinear controller for a nonlinear system of integrated guidance and control.

Abstract

Purpose

The purpose of this paper is to design an adaptive nonlinear controller for a nonlinear system of integrated guidance and control.

Design/methodology/approach

A nonlinear integrated guidance and control approach is applied to a homing, tail-controlled air vehicle. Adaptive backstepping controller technique is used to deal with the problem, and the Lyapanov theory is used in the stability analysis of the nonlinear system. A nonlinear model of normal force coefficient is obtained from an existing nonlinear model of lift coefficient which was validated by open loop response. The simulation was performed in the pitch plane to prove the benefits of the proposed scheme; however, it can be readily extended to all the three axes.

Findings

Monte Carlo simulations indicate that using nonlinear adaptive backstepping formulation meaningfully improves the performance of the system, while it ensures stability of a nonlinear system.

Practical implications

The proposed method could be used to obtain better performance of hit to kill accuracy without the expense of control effort.

Originality/value

A nonlinear adaptive backstepping controller for nonlinear aerodynamic air vehicle is designed and guaranteed to be stable which is a novel-based approach to the integrated guidance and control. This method makes noticeable performance improvement, and it can be used with hit to kill accuracy.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 299