Search results

1 – 10 of 14
Article
Publication date: 2 January 2018

Yu Hu, Hailang Zhang and Gengqi Wang

This paper aims to investigate the mechanisms lying behind the cycloidal rotor under hovering status.

Abstract

Purpose

This paper aims to investigate the mechanisms lying behind the cycloidal rotor under hovering status.

Design/methodology/approach

Experiments were conducted to validate the numerical simulation results. The simulations were based on unsteady Reynolds-averaged Navier–Stokes (URANS) equations solver and the sliding mesh technique was used to model the blade motion. 2D and 2.5D simulations were made to investigate the 3D effects of turbulence. The effects of pressure and viscosity were compared to study the significance of the blade motion on force generation.

Findings

The 2.5D numerical simulation cannot produce more accurate results than the 2D counterpart. The pitching motion of the blade results in dynamic stall. The dynamic stall vortices induce parallel blade vortex interaction (BVI) upon downstream blades. The interactions between the blades delay the stall of the blade which is beneficial to the thrust generation. The blade pitching motion is the dominant contributor to the force generation and the turbulence is the secondary. Strong downwash in the rotor cage varied the inflow velocity as well as the effective angle of attack (AOA) of the blade.

Practical implications

Cycloidal rotor is a propulsion device that can provide omni-directional vectored thrust with high efficiency and low noise. To understand the mechanisms lying behind the cycloidal rotor helps the authors to design efficient cycloidal rotors for aircraft.

Originality/value

The authors discovered that the blade pitching motion plays primary role in force generation. The effects of the dynamic stall and BVI were studied. The reason why cycloidal rotor can be more efficient was discussed.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 21 March 2011

Jae S. Park, Sung N. Jung, Young H. You, Soo H. Park and Yung H. Yu

The purpose of this paper is to evaluate the prediction capability of comprehensive structural dynamics (CSD) analysis codes for the higher harmonic control aeroacoustic rotor…

Abstract

Purpose

The purpose of this paper is to evaluate the prediction capability of comprehensive structural dynamics (CSD) analysis codes for the higher harmonic control aeroacoustic rotor test (HART) II data.

Design/methodology/approach

A nonlinear flexible multibody dynamics analysis code DYMORE, as well as the comprehensive analytical model of rotorcraft aerodynamics and dynamics (CAMRAD) II, are used to perform the task. The predicted results on rotating free vibration analysis, airloads, blade elastic motions, and structural moments are correlated with the measured data for the baseline, minimum noise, and minimum vibration cases.

Findings

The DYMORE analysis results with a free wake model show a good performance in capturing blade vortex interaction peaks in the prediction of section normal forces but apparently with a phase shift problem. The high‐frequency behavior in the airloads signal does not affect much on the aeroelastic response and structural moments of the rotor.

Originality/value

The present approach uses two separate CSD codes to systematically validate the HART II data. The accuracy of each code on structural dynamic aspects of HART II rotor is assessed using a consistent set of inputs. The effects of blade tip deflections on the interaction of blades and their trailed vortices leading to a reduced noise emission are also investigated.

Details

Aircraft Engineering and Aerospace Technology, vol. 83 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 3 October 2016

Jae-Sang Park and Young Jung Kee

This paper aims to compare the comprehensive rotorcraft analyses using the two different blade section property data sets for the blade natural frequencies, airloads, elastic…

Abstract

Purpose

This paper aims to compare the comprehensive rotorcraft analyses using the two different blade section property data sets for the blade natural frequencies, airloads, elastic deformations, the trimmed rotor pitch control angles and the blade structural loads of a small-scale model rotor in a blade vortex interaction (BVI) phenomenon.

Design/methodology/approach

The two different blade section property data sets for the first Higher-harmonic control Aeroacoustic Rotor Test (HART-I) are considered for the present rotor aeromechanics analyses. One is the blade property data set using the predicted values which is one of the estimated data sets used for the previous validation works. The other data set uses the measured values for an uninstrumented blade. A comprehensive rotorcraft analysis code, CAMRAD II (comprehensive analytical model of rotorcraft aerodynamics and dynamics II), is used to predict the rotor aeromechanics such as the blade natural frequencies, airloads, elastic deformations, the trimmed rotor pitch control angles and the blade structural loads for the three test cases with and without higher-harmonic control pitch inputs. In CAMRAD II modelling with the two different blade property data sets, the blade is represented as a geometrically nonlinear elastic beam, and the multiple-trailer wake with consolidation model is used to consider more elaborately the BVI effect in low-speed descending flight. The aeromechanics analysis result sets using the two different blade section property data sets are compared with each other as well as are correlated with the wind-tunnel test data.

Findings

The predicted blade natural frequencies using the two different blade section property data sets at non-rotating condition are quite similar to each other except for the natural frequency in the fourth flap mode. However, the natural frequencies using the predicted blade properties at nominal rotating condition are lower than those with the measured blade properties except for the second lead-lag frequency. The trimmed collective pitch control angle with the predicted blade properties is higher than both the wind-tunnel test data and the result using the measured blade properties in all the three test cases. The two different blade property data sets both give reasonable predictions on the blade section normal forces with BVI in the three test cases, and the two analysis results are reasonably similar to each other. The blade elastic deformations at the tip using the measured blade properties are correlated more closely with the wind-tunnel test data than those using the predicted blade properties in most correlation examples. In addition, the predictions of blade structural loads can be slightly or moderately improved by using the measured blade properties particularly for the oscillatory flap bending moments. Finally, the movement of the sectional centre of gravity location of the uninstrumented blade has a moderate influence on the blade elastic twist at the tip in the baseline case and the oscillatory flap bending moment in the minimum noise case.

Practical implications

The present comparison study on rotor aeromechanics analyses using the two different blade property data sets will show the influence of blade section properties on rotor aeromechanics analysis.

Originality/value

This paper is the first attempt to compare the aeromechanics analysis results using the two different blade section property data sets for all three test cases (baseline, minimum noise and minimum vibration) of HART-I in low-speed descending flight.

Details

Aircraft Engineering and Aerospace Technology, vol. 88 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 15 October 2018

Hailang Zhang, Yu Hu and Gengqi Wang

This paper aims to investigate the impact of aerofoil camber on the performance of micro-air-vehicle-scale cycloidal propellers.

Abstract

Purpose

This paper aims to investigate the impact of aerofoil camber on the performance of micro-air-vehicle-scale cycloidal propellers.

Design/methodology/approach

First, experiments were conducted to validate the numerical methodology. After that, three turbulent models were compared to select the most accurate one. Then, 2D numerical simulation was carried out on 11 aerofoils with different cambers, including five cambered aerofoils, one symmetrical aerofoil and five inverse cambered aerofoils. The inverse cambered aerofoils are symmetrical about the chord line to the corresponding cambered ones.

Findings

The cycloidal propeller with large cambered aerofoil gives the lowest hovering efficiency, but with symmetrical aerofoil or small inverse cambered aerofoil shows the highest. Also, blades with large cambered aerofoil display high performance at the upper part of its trajectory, while with symmetrical aerofoil or the inverse cambered aerofoil have their best at the lower part. In addition, intensified downwash can be observed in the rotor cage for all cases. When a blade runs through the top-left part of its circle path, all cases display the feature of deep dynamic stall. When the blade travels through the nadir of its path, the actual angle of attack is close to zero due to the strong downwash. Furthermore, there exits intensified blade-vortex interaction induced by the preceding blade for large cambered aerofoils at the lower-right part of its trajectory.

Practical implications

This paper develops a new cycloidal propeller which is more efficient than the one already present.

Originality/value

This paper discovers that the aerofoil camber is a vital design parameter in the performance of cycloidal propeller, and the authors expect that the rotor with deformable aerofoil on camber would achieve much higher efficiency.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 September 2016

Lyaysan Ildusovna Garipova, Andrei Sergeevich Batrakov, Alexander Nikolaevich Kusyumov, Sergey Anatolievich Mikhaylov and George Barakos

The design of main rotor blade tips is of interest to helicopter manufactures since the tip details affect the performance and acoustics of the rotor. The paper aims to discuss…

Abstract

Purpose

The design of main rotor blade tips is of interest to helicopter manufactures since the tip details affect the performance and acoustics of the rotor. The paper aims to discuss this issue.

Design/methodology/approach

In this paper, computation fluid dynamics is used to simulate the flow around hovering helicopter blades with different tip designs. For each type of blade tip a parametric study on the shape is also conducted for comparison calculations were performed the constant rotor thrust condition. The collective pitch and the cone angles of the blades were determined by at an iterative trimming process.

Findings

Analysis of the distributed blade loads shows that the tip geometry has a significant influence on aerodynamics and aeroacoustics especially for stations where blade loading is high.

Originality/value

The aeroacoustic characteristics of the rotors were obtained using Ffowcs Williams-Hawkings equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Content available
Article
Publication date: 1 December 2002

517

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 74 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 12 October 2012

Emanuele Piccione, Giovanni Bernardini and Massimo Gennaretti

The purpose of this paper is to present the development and application of a numerical formulation for the structural dynamics and aeroelastic analysis of new generation…

3806

Abstract

Purpose

The purpose of this paper is to present the development and application of a numerical formulation for the structural dynamics and aeroelastic analysis of new generation helicopter and tiltrotor rotor blades. These are characterized by a curvilinear elastic axis, typically with the presence of tip sweep and anhedral angles.

Design/methodology/approach

The structural dynamics model implemented is based on nonlinear, flap‐lag‐torsion, rotating beam equations that are valid for slender, homogeneous, isotropic, non‐uniform, twisted blades undergoing moderate displacements. A second‐order approximation scheme for strain‐displacement is adopted. Aerodynamic contributions for aeroelastic applications are derived from sectional theories, with inclusion of wake inflow models to take into account three‐dimensional effects. The numerical integration is obtained through implementation within the COMSOL Multiphysics Finite‐Element‐Method (FEM) software code, considering the elastic axis of arbitrary curvilinear shape.

Findings

The computational tool developed is validated by comparisons with results available in the literature. These demonstrate the capability of the tool to accurately predict structural dynamics and aeroelastic behavior of curved‐axis rotor blades. In particular, the influence of sweep and anhedral angles at the blade tip is successfully captured.

Research limitations/implications

The numerical tool developed is limited to the analysis of isotropic blades, with a simple sectional aerodynamic modeling for aeroelastic applications. However, the flexibility of the process through which the proposed tool has been developed is such that a moderate effort is required for its extension to composite blades and more accurate aerodynamic loads predictions.

Practical implications

The proposed computational solver is a reliable tool for preliminary design and optimal design processes of helicopter and tiltrotor rotor blades.

Originality/value

Computational tools for rotors with advanced‐geometry blades are not commonly available. Therefore, the presentation of a successful way to implement structural dynamics/aeroelastic mathematical formulations for rotor blades with curvilinear elastic axis in highly flexible, multiphysics, FEM‐based, commercial software may be of interest for designers and researchers.

Details

Aircraft Engineering and Aerospace Technology, vol. 84 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 January 2014

Jae-Sang Park

This paper aims to correlate the flexible multibody analysis for the performance, blade airloads, rotor pitch control angles, and blade structural loads of a full-scale utility…

Abstract

Purpose

This paper aims to correlate the flexible multibody analysis for the performance, blade airloads, rotor pitch control angles, and blade structural loads of a full-scale utility helicopter rotor in low-speed forward flight with wind tunnel test and flight test data.

Design/methodology/approach

A nonlinear flexible multibody dynamics analysis code, DYMORE, is used to analyze the performance and aeromechanics of a utility helicopter rotor in low-speed forward flight. The main rotor system is modeled using various multibody elements such as rigid bodies, nonlinear elastic beams, mechanical joints, and elastic springs/dampers. The freewake model is used to capture rotor wakes more elaborately in low-speed forward flight.

Findings

Fair to good correlations of rotor performance such as figure of merit in hover, rotor power, propulsive force, and lift in low-speed forward flight are achieved with sweeps of the thrust, rotor shaft tilting angle, and advance ratio, against wind tunnel test data. The blade section normal forces from the mid-span to outboard are fairly or well correlated with flight test data, but the normal force at the inboard blade station is under-predicted. The trimmed pitch control angles are reasonably predicted; however, the lateral cyclic pitch control angle is moderately under-predicted. The flap bending moments are compared fairly with measurements; however, the oscillations of the lead-lag bending and torsion moments are not captured well.

Practical implications

Reasonable predictions of the performance and aeromechanics of the rotor in low-speed forward flight will allow the flexible multibody dynamics to be used for the rotorcraft comprehensive analysis, in place of expensive flight and wind tunnel tests of the rotor.

Originality/value

Up to now, the stand-alone flexible multibody dynamics without the aid of external aerodynamic analysis has not been widely used for the analyses of rotor performance and aeromechanics in low-speed forward flight. However, the present flexible multibody dynamics analysis directly integrated with the freewake model gives fair to good correlation of the rotor performance and aeromechanics predictions in low-speed forward flight.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 May 1994

Making a quiet helicopter even quieter is the aim of a new technology being developed by McDonnell Douglas Helicopter Systems.

Abstract

Making a quiet helicopter even quieter is the aim of a new technology being developed by McDonnell Douglas Helicopter Systems.

Details

Aircraft Engineering and Aerospace Technology, vol. 66 no. 5
Type: Research Article
ISSN: 0002-2667

Content available
Article
Publication date: 1 August 2003

125

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 75 no. 4
Type: Research Article
ISSN: 0002-2667

1 – 10 of 14