Search results

1 – 2 of 2
To view the access options for this content please click here
Article
Publication date: 6 July 2015

N.P. Badgujar, Y.E. Bhoge, T.D. Deshpande, B.A. Bhanvase, P.R. Gogate, S.H. Sonawane and R.D. Kulkarni

– The present work aims to deal with ultrasound-assisted organic pigment (phthalocyanine blue and green) dispersion and its comparison with the conventional approach.

Abstract

Purpose

The present work aims to deal with ultrasound-assisted organic pigment (phthalocyanine blue and green) dispersion and its comparison with the conventional approach.

Design/methodology/approach

Ultrasound is expected to give beneficial results based on the strong shear forces generated by cavitational effects. The dispersion quality for preparation using an ultrasound-based method has been compared with dispersion obtained using high-speed dispersion mill. Effects of different operating parameters such as probe diameter and use of surfactants on the physical properties of dispersion and the colour strength have been investigated. Calculations for the energy requirement for two approaches have also been presented.

Findings

The use of sodium dodecyl sulphate and Tween 80 surfactants shows better performance in terms of the colour properties of dispersion prepared in water and organic solvent, respectively. Ultrasound gives better dispersion quality as compared to the conventional approach.

Originality/value

The present work presents a new approach of ultrasound-assisted dispersion of phthalocyanine blue and green pigments. Understanding into the effect of surfactants and type of solvent also presents new important design-related information.

Details

Pigment & Resin Technology, vol. 44 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

To view the access options for this content please click here
Article
Publication date: 4 November 2020

Tantan Shao, Xiaolong Chen and Lijun Chen

Silane cross-linkers have been used to strengthen the mechanical stabilities and friction resistance of plastic products. Therefore, the effect of silane cross-linkers on…

Abstract

Purpose

Silane cross-linkers have been used to strengthen the mechanical stabilities and friction resistance of plastic products. Therefore, the effect of silane cross-linkers on latex has been studied through preparing modified self-cross-linking long fluorocarbon polyacrylate latex. In this paper, nonionic surfactant alcohol ether glycoside (AEG1000) and anionic polymerizable surfactant 1-allyloxy-3-(4-nonylphenol)-2-propanol polyoxyethylene (10) ether ammonium sulfate (DNS-86) acted as mixed emulsifier and 3-(methacryloyloxy) propyltrimethoxysilane (KH-570) and bis (2-ethylhexyl) maleate (DOM) were used as functional monomers.

Design/methodology/approach

The modified acrylate polymer latex was synthesized through the semi-continuous seeded emulsion polymerization with methyl methacrylate (MMA), butyl acrylate (BA), dodecafluoroheptyl methacrylate (DFMA) and hydroxypropyl methacrylate (HPMA) as main monomers. Potassium persulfate (KPS) was applied to initiate polymerization reaction, nonionic surfactant AEG1000 and DNS-86 acted as emulsifier, KH-570 and DOM were used as functional monomers, respectively.

Findings

The optimum conditions of synthesizing the modified latex were the following. The mass ratio of monomers containing MMA, BA, DFMA, HPMA, KH-570 and DOM was 13.58:13.58:0.90:1.20:0.15:0.60, the usage of initiator KPS was 0.5% of the total weight of monomers and the amount of emulsifier was 7% of all monomers with AEG1000:DNS-86 = 1:1. The results indicated that the conversion of monomer was 99% and the coagulation was about 2.0%.

Originality/value

The resultant latex was modified silane cross-linker KH-570 and DOM, which positively affected the comprehensive properties of latex and its film. Apart from this, the novel mixed emulsifier was used to improve the size and distribution of latex particles and reduce environmental problems caused by the use of emulsifiers.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 2 of 2