Search results

1 – 10 of over 29000
Article
Publication date: 1 November 2023

Ahmed M. E. Bayoumi

This article proposes a relaxed gradient iterative (RGI) algorithm to solve coupled Sylvester-conjugate transpose matrix equations (CSCTME) with two unknowns.

Abstract

Purpose

This article proposes a relaxed gradient iterative (RGI) algorithm to solve coupled Sylvester-conjugate transpose matrix equations (CSCTME) with two unknowns.

Design/methodology/approach

This article proposes a RGI algorithm to solve CSCTME with two unknowns.

Findings

The introduced (RGI) algorithm is more efficient than the gradient iterative (GI) algorithm presented in Bayoumi (2014), where the author's method exhibits quick convergence behavior.

Research limitations/implications

The introduced (RGI) algorithm is more efficient than the GI algorithm presented in Bayoumi (2014), where the author's method exhibits quick convergence behavior.

Practical implications

In systems and control, Lyapunov matrix equations, Sylvester matrix equations and other matrix equations are commonly encountered.

Social implications

In systems and control, Lyapunov matrix equations, Sylvester matrix equations and other matrix equations are commonly encountered.

Originality/value

This article proposes a relaxed gradient iterative (RGI) algorithm to solve coupled Sylvester conjugate transpose matrix equations (CSCTME) with two unknowns. For any initial matrices, a sufficient condition is derived to determine whether the proposed algorithm converges to the exact solution. To demonstrate the effectiveness of the suggested method and to compare it with the gradient-based iterative algorithm proposed in [6] numerical examples are provided.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 April 2023

Lingli Shu, Xiaoyan Li and Xuedong Liang

For nanostores, striving to become the community group-buying leader is gaining prominence. This paper aims to construct Hotelling linear models to investigate whether nanostores…

Abstract

Purpose

For nanostores, striving to become the community group-buying leader is gaining prominence. This paper aims to construct Hotelling linear models to investigate whether nanostores should be registered as leaders and their decisions in a competitive environment.

Design/methodology/approach

This paper constructs three Hotelling linear models: neither nanostore registers as community leader, only one nanostore registers as community leader and both nanostores register as community leader. The competitive operation strategies of two general nanostores under three scenarios are solved.

Findings

The study finds that nanostores without a cost advantage may benefit from being the first leader. The nanostore's preferred decisions depend on the investment cost parameters of its own and competitors which may lead to market share competition. Furthermore, consumers' sensitivity to community group-buying service has a negative effect on nanostores' profit.

Originality/value

The study is one of the few to consider the competition between community leaders. Besides, the study considers that the utilities functions of consumers are concurrently impacted by the service decisions, along with the price in different nanostores. It can provide nanostores useful implications in the dynamic industry.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 12 July 2023

Xin Su, Eburilitu Bai and Guojun Hai

A unified framework for solving the bending, buckling and vibration problems of rectangular thin plates (RTPs) with four free edges (FFFF), including isotropic RTPs, orthotropic…

Abstract

Purpose

A unified framework for solving the bending, buckling and vibration problems of rectangular thin plates (RTPs) with four free edges (FFFF), including isotropic RTPs, orthotropic rectangular thin plates (ORTPs) and nano-rectangular plates, is established by using the symplectic superposition method (SSM).

Design/methodology/approach

The original fourth-order partial differential equation is first rewritten into Hamiltonian system. The class of boundary value problems of the original equation is decomposed into three subproblems, and each subproblem is given the corresponding symplectic eigenvalues and symplectic eigenvectors by using the separation variable method in Hamiltonian system. The symplectic orthogonality and completeness of symplectic eigen-vectors are proved. Then, the symplectic eigenvector expansion method is applied to solve the each subproblem. Then, the symplectic superposition solution of the boundary value problem of the original fourth-order partial differential equation is given through superposing analytical solutions of three foundation plates.

Findings

The bending, vibration and buckling problems of the rectangular nano-plate/isotropic rectangular thin plate/orthotropic rectangular thin plate with FFFF can be solved by the unified symplectic superposition solution respectively.

Originality/value

The symplectic superposition solution obtained is a reference solution to verify the feasibility of other methods. At the same time, it can be used for parameter analysis to deeply understand the mechanical behavior of related RTPs. The advantages of this method are as follows: (1) It provides a systematic framework for solving the boundary value problem of a class of fourth-order partial differential equations. It is expected to solve more complicated boundary value problems of partial differential equations. (2) SSM uses series expansion of symplectic eigenvectors to accurately describe the solution. Moreover, symplectic eigenvectors are orthogonal and directly reflect the orthogonal relationship of vibration modes. (3) The SSM can be carried to bending, buckling and free vibration problems of the same plate with other boundary conditions.

Details

Engineering Computations, vol. 40 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 June 2022

Sreenadh Sreedharamalle, Sumalatha Baina and Srinivas A.N.S.

This paper aims to investigate the flow of two-layered non-Newtonian fluids with different viscosities in an axisymmetric elastic tube.

Abstract

Purpose

This paper aims to investigate the flow of two-layered non-Newtonian fluids with different viscosities in an axisymmetric elastic tube.

Design/methodology/approach

A mathematical model was considered for this study to describe the flow characteristics of two-layered non- Newtonian Jeffrey fluids in an elastic tube. Because Jeffrey fluid model is a better model for the description of physiological fluid motion. Further, this model is a significant generalization of Newtonian fluid model. Analytical expressions for flux, stream functions, velocities and interface velocity have been derived in terms of elastic parameters, inlet, outlet and external pressures. The effects of various pertinent parameters on the flow behavior have been studied.

Findings

The volumetric flow rate was calculated by different models of Mazumdar (1992) and Rubinow and Keller (1972); from this it was found that the flux of Jeffrey fluid is more in the case of Rubinow and Keller model than Mazumdar. A comparative study is made between single-fluid and two-fluid models of Jeffrey fluid flows and it was observed that more flux and higher velocities were observed in the case of two-fluid model rather than single-fluid model. Furthermore, when both the Jeffrey parameter tends to zero and ratios of viscosities and radii are unity, the results in this study agree with those of Rubinow and Keller (1972).

Originality/value

To describe the fluid flow in an elastic tube with two-layered systems, the models and solutions developed here are very important. These results will be highly suitable in analyzing the rheological characteristics of blood flow in a small blood vessel because of their elastic nature.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 June 2023

Prashant Kumar Choudhary

The objective of the present work is to present the design optimization of composite cylindrical shell subjected to an axial compressive load and lateral pressure.

Abstract

Purpose

The objective of the present work is to present the design optimization of composite cylindrical shell subjected to an axial compressive load and lateral pressure.

Design/methodology/approach

A novel optimization method is developed to predict the optimal fiber orientation in composite cylindrical shell. The optimization is carried out by coupling analytical and finite element (FE) results with a genetic algorithm (GA)-based optimization scheme developed in MATLAB. Linear eigenvalue were performed to evaluate the buckling behaviour of composite cylinders. In analytical part, besides the buckling analysis, Tsai-Wu failure criteria are employed to analyse the failure of the composite structure.

Findings

The optimal result obtained through this study is compared with traditionally used laminates with 0, 90, ±45 orientation. The results suggest that the application of this novel optimization algorithm leads to an increase of 94% in buckling strength.

Originality/value

The proposed optimal fiber orientation can provide a practical and efficient way for the designers to evaluate the buckling pressure of the composite shells in the design stage.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 25 April 2024

H.G. Di, Pingbao Xu, Quanmei Gong, Huiji Guo and Guangbei Su

This study establishes a method for predicting ground vibrations caused by railway tunnels in unsaturated soils with spatial variability.

Abstract

Purpose

This study establishes a method for predicting ground vibrations caused by railway tunnels in unsaturated soils with spatial variability.

Design/methodology/approach

First, an improved 2.5D finite-element-method-perfect-matching-layer (FEM-PML) model is proposed. The Galerkin method is used to derive the finite element expression in the ub-pl-pg format for unsaturated soil. Unlike the ub-v-w format, which has nine degrees of freedom per node, the ub-pl-pg format has only five degrees of freedom per node; this significantly enhances the calculation efficiency. The stretching function of the PML is adopted to handle the unlimited boundary domain. Additionally, the 2.5D FEM-PML model couples the tunnel, vehicle and track structures. Next, the spatial variability of the soil parameters is simulated by random fields using the Monte Carlo method. By incorporating random fields of soil parameters into the 2.5D FEM-PML model, the effect of soil spatial variability on ground vibrations is demonstrated using a case study.

Findings

The spatial variability of the soil parameters primarily affected the vibration acceleration amplitude but had a minor effect on its spatial distribution and attenuation over time. In addition, ground vibration acceleration was more affected by the spatial variability of the soil bulk modulus of compressibility than by that of saturation.

Originality/value

Using the 2.5D FEM-PML model in the ub-pl-pg format of unsaturated soil enhances the computational efficiency. On this basis, with the random fields established by Monte Carlo simulation, the model can calculate the reliability of soil dynamics, which was rarely considered by previous models.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 July 2023

Yijie Zhang, Ling Ma, Ziyi Guo, Tao Li and Fengyuan Zou

Considering only two-dimensional (2D) ease allowance cannot fully reflect the three-dimensional (3D) relationship between the position of clothing and the human body. The purpose…

Abstract

Purpose

Considering only two-dimensional (2D) ease allowance cannot fully reflect the three-dimensional (3D) relationship between the position of clothing and the human body. The purpose of this paper is to propose a method with a 3D space vector and corresponding distance ease to characterize fitting garments and then used to construct personalized clothing for similar shape body.

Design/methodology/approach

Firstly, a 3D scanner was used to obtain mannequin and fitted garment data, and 17 layers of cross-sections of the upper body were extracted. Then, 37 space vectors and corresponding space angles on each cross-section were obtained with the original point. Secondly, the detailed distance ease between the mannequin and garment was constructed due to the difference between garment vectors and body vectors. Thirdly, the distance ease mathematical models were achieved and used to calculate distance ease on a similar shape body. Additionally, the fit garment is constructed, and the garment pattern is altered by the geometric pattern alteration method.

Findings

The results show that 3D space vectors can explain the relationship between body skin and garment surface of the upper body properly. The distance ease is modeled by mathematic expressions and successfully used to make a new garment to fit a similar shape body.

Originality/value

The proposed method of constructing garments based on distance ease and 3D space vectors can create a fitted garment for a similar shape body effectively and accurately. It is useful for the personalized garment design and suitable for the manufacturing process.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 12 March 2024

Aslina Nasir and Yeny Nadira Kamaruzzaman

This study was conducted to forecast the monthly number of tuna landings between 2023 and 2030 and determine whether the estimated number meets the government’s target.

Abstract

Purpose

This study was conducted to forecast the monthly number of tuna landings between 2023 and 2030 and determine whether the estimated number meets the government’s target.

Design/methodology/approach

The ARIMA and seasonal ARIMA (SARIMA) models were employed for time series forecasting of tuna landings from the Malaysian Department of Fisheries. The best ARIMA (p, d, q) and SARIMA(p, d, q) (P, D, Q)12 model for forecasting were determined based on model identification, estimation and diagnostics.

Findings

SARIMA(1, 0, 1) (1, 1, 0)12 was found to be the best model for forecasting tuna landings in Malaysia. The result showed that the fluctuation of monthly tuna landings between 2023 and 2030, however, did not achieve the target.

Research limitations/implications

This study provides preliminary ideas and insight into whether the government’s target for fish landing stocks can be met. Impactful results may guide the government in the future as it plans to improve the insufficient supply of tuna.

Practical implications

The outcome of this study could raise awareness among the government and industry about how to improve efficient strategies. It is to ensure the future tuna landing meets the targets, including increasing private investment, improving human capital in catch and processing, and strengthening the system and technology development in the tuna industry.

Originality/value

This paper is important to predict the trend of monthly tuna landing stock in the next eight years, from 2023 to 2030, and whether it can achieve the government’s target of 150,000 metric tonnes.

Details

International Journal of Social Economics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0306-8293

Keywords

Article
Publication date: 8 August 2023

Sivakumar Sundararajan and Senthil Arasu Balasubramanian

This study empirically explores the intraday price discovery mechanism and volatility transmission effect between the dual-listed Indian Nifty index futures traded simultaneously…

Abstract

Purpose

This study empirically explores the intraday price discovery mechanism and volatility transmission effect between the dual-listed Indian Nifty index futures traded simultaneously on the onshore Indian exchange, National Stock Exchange (NSE) and offshore Singapore Exchange (SGX) and its spot market by using high-frequency data.

Design/methodology/approach

This study applies the vector error correction model to analyze the lead-lag relationship in price discovery among three markets. The contributions of individual markets in assimilating new information into prices are measured using various measures, Hasbrouck's (1995) information share, Lien and Shrestha's (2009) modified information share and Gonzalo and Granger's (1995) component share. Additionally, the Granger causality test is conducted to determine the causal relationship. Lastly, the BEKK-GARCH specification is employed to analyze the volatility transmission.

Findings

This study provides robust evidence that Nifty futures lead the spot in price discovery. The offshore SGX Nifty futures consistently ranked first in contributing to price discovery, followed by onshore NSE Nifty futures and finally by the spot. Empirical results also show unidirectional causality and volatility transmission from Nifty futures to spot, as well as bidirectional causal relationship and volatility spillovers between NSE and SGX Nifty futures. These novel findings provide fresh insights into the informational efficiency of the dual-listed Indian Nifty futures, which is distinct from previous literature.

Practical implications

These findings can potentially help market participants, policymakers, stock exchanges and regulators.

Originality/value

Unlike previous studies in this area, this is the first study that empirically examines the intraday price discovery mechanism and volatility spillover between the dual-listed futures markets and its spot market using 5-min overlapping price data and trivariate econometric models.

Details

International Journal of Emerging Markets, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-8809

Keywords

Article
Publication date: 31 July 2023

Hongyue Zhao, Chuang Shi, Hongwei Guo and Rongqiang Liu

In order to make the aperture of spatial deployable antenna larger, this paper proposed the study on a spatial annular tensegrity structure with 100 m large scale, which could be…

Abstract

Purpose

In order to make the aperture of spatial deployable antenna larger, this paper proposed the study on a spatial annular tensegrity structure with 100 m large scale, which could be one of the ideal solutions to improve the dimension of the antenna. This study is aiming to figure out the dynamic characteristic of ultra-large annular tensegrity and address the problem of insufficient rigidity with local modes that many ring truss-type deployable antenna structures have faced.

Design/methodology/approach

This work is carried out based on the nonlinear dynamic modelling when fully considering the effect of bending and torsion deformation of beams, as well as the pretension of cables. Additionally, the structural stability analysis based on the proposed stability criterion is also presented to evaluate the tensegrity configuration with different distribution of cable groups.

Findings

This research results verify that the modified structure with radial ribs could eliminate the effect of the local vibration mode on stiffness and is suitable to meet the requirements of the annular tensegrity structure. Additionally, the calculation results demonstrate that the structural configuration of annular tensegrity with 36 groups of cables which share the nodes with radial ribs is more appropriate to enhance the stiffness and structural stability.

Originality/value

A new large annular tensegrity structure with radial ribs and tensioned cables is proposed. Based on the proposed structural configuration, the positive definiteness of the tangent stiffness matrix is carried out as the criterion of stability and the composition of the analytical expression of the tangent stiffness matrix is analyzed. Four levels of tensegrity structure stability have been carried out and the influence of the structural parameters on the stability and the rigidity has been analyzed. A scaled-down prototype is developed to verify the feasibility of the design of the hoop-column-rib configuration by the deployment and dynamic experiment.

Details

Engineering Computations, vol. 40 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 29000