Search results

1 – 10 of 10
Open Access
Article
Publication date: 17 October 2022

Jesús Miguel Chacón, Javier Sánchez-Reyes, Javier Vallejo and Pedro José Núñez

Non-uniform rational B-splines (NURBSs) are the de facto standard for representing objects in computer-aided design (CAD). The purpose of this paper is to discuss how to stick to…

1273

Abstract

Purpose

Non-uniform rational B-splines (NURBSs) are the de facto standard for representing objects in computer-aided design (CAD). The purpose of this paper is to discuss how to stick to this standard in all phases of the additive manufacturing (AM) workflow, from the CAD object to the final G-code, bypassing unnecessary polygonal approximations.

Design/methodology/approach

The authors use a commercial CAD system (Rhino3D along with its programming environment Grasshopper) for direct slicing of the model, offset generation and trimming. Circular arcs are represented as quadratic NURBSs and free-form geometry as quadratic or cubic polynomial B-splines. Therefore, circular arcs are directly expressible as G2/G3 G-code commands, whereas free-form paths are rewritten as a succession of cubic Bézier curves, thereby admitting exact translation into G5 commands, available in firmware for AM controllers, such as Marlin.

Findings

Experimental results of this paper confirm a considerable improvement in quality over the standard AM workflow, consisting of an initial polygonization of the object (e.g. via standard tessellation language), slicing this polygonal approximation, offsetting the polygonal sections and, finally, generating G-code made up of polyline trajectories (G1 commands).

Originality/value

A streamlined AM workflow is obtained, with a seamless transfer from the initial CAD description to the final G-code. By adhering to the NURBS standard at all steps, the authors avoid multiple representations and associated errors resulting from approximations.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 2 November 2022

Panayiotis Tzeremes

The study aims to investigate the nexus between total factor productivity and tourism growth in Latin American countries for time series data from 1995 to 2017.

Abstract

Purpose

The study aims to investigate the nexus between total factor productivity and tourism growth in Latin American countries for time series data from 1995 to 2017.

Design/methodology/approach

Using the extension of the Granger noncausality test in the nonlinear time-varying of Ajmi et al. (2015), the study points out the interconnectedness between the variables during the period.

Findings

The study found nonlinear causality between the variables. Particularly, studying the conclusions for the time-varying Granger causality fashion, it can be noticed that the one-way causality from total factor productivity to tourism growth is obtained for Argentina, Bolivia, Brazil, Uruguay and Venezuela, while the vice versa is confirmed for Chile, Ecuador and Nicaragua. Lastly, the study dissected the plots of the curve causality.

Practical implications

In view of the results, some crucial policy implications could be suggested, such as, under certain circumstances and as an exceptional case, the use of policy instruments such as targeted investment, marketing and the support of tourism organizations focused on driving a tourism-led-based productivity and/or tourism programs and projects.

Originality/value

The current work is distinguished from the existing body of understanding in several substantial directions. This work explores, for the first time, the linkages between the total factor productivity index and tourism growth for Latin American countries. No single attempt has been known to investigate this interaction by using nonlinear causality, and this study determines the shape of the curve between the total factor productivity index and tourism growth for each country.

Details

Journal of Economics, Finance and Administrative Science, vol. 27 no. 54
Type: Research Article
ISSN: 2218-0648

Keywords

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 18 March 2022

Shengtao Lin and Zhengcai Zhao

Complex and exquisite patterns are sculpted on the surface to beautify the parts. Due to the thin-walled nature, the blank of the part is often deformed by the forming and…

Abstract

Purpose

Complex and exquisite patterns are sculpted on the surface to beautify the parts. Due to the thin-walled nature, the blank of the part is often deformed by the forming and clamping processes, disabling the nominal numerical control (NC) sculpting programs. To address this problem, a fast adaptive sculpting method of the complex surface is proposed.

Design/methodology/approach

The geometry of the blank surface is measured using on-machine measurement (OMM). The real blank surface is reconstructed using the non-uniform rational basis spline (NURBS) method. The angle-based flattening (ABF) algorithm is used to flatten the reconstructed blank surface. The dense points are extracted from the pattern on the image using the OpenCV library. Then, the dense points are quickly located on the complex surfaces to generate the tool paths.

Findings

By flattening the reconstructed surface and creating the mapping between the contour points and the planar mesh triangular patches, the tool paths can be regenerated to keep the contour of the pattern on the deformed thin-walled surface.

Originality/value

The proposed method can adjust the tool paths according to the deformation of the thin-walled part. The consistency of sculpting patterns is improved.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 12 July 2022

Nianfei Gan, Miaomiao Zhang, Bing Zhou, Tian Chai, Xiaojian Wu and Yougang Bian

The purpose of this paper is to develop a real-time trajectory planner with optimal maneuver for autonomous vehicles to deal with dynamic obstacles during parallel parking.

Abstract

Purpose

The purpose of this paper is to develop a real-time trajectory planner with optimal maneuver for autonomous vehicles to deal with dynamic obstacles during parallel parking.

Design/methodology/approach

To deal with dynamic obstacles for autonomous vehicles during parking, a long- and short-term mixed trajectory planning algorithm is proposed in this paper. In long term, considering obstacle behavior, A-star algorithm was improved by RS curve and potential function via spatio-temporal map to obtain a safe and efficient initial trajectory. In short term, this paper proposes a nonlinear model predictive control trajectory optimizer to smooth and adjust the trajectory online based on the vehicle kinematic model. Moreover, the proposed method is simulated and verified in four common dynamic parking scenarios by ACADO Toolkit and QPOASE solver.

Findings

Compared with the spline optimization method, the results show that the proposed method can generate efficient obstacle avoidance strategies, safe parking trajectories and control parameters such as the front wheel angle and velocity in high-efficient central processing units.

Originality/value

It is aimed at improving the robustness of automatic parking system and providing a reference for decision-making in a dynamic environment.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 17 September 2020

Tao Peng, Xingliang Liu, Rui Fang, Ronghui Zhang, Yanwei Pang, Tao Wang and Yike Tong

This study aims to develop an automatic lane-change mechanism on highways for self-driving articulated trucks to improve traffic safety.

1661

Abstract

Purpose

This study aims to develop an automatic lane-change mechanism on highways for self-driving articulated trucks to improve traffic safety.

Design/methodology/approach

The authors proposed a novel safety lane-change path planning and tracking control method for articulated vehicles. A double-Gaussian distribution was introduced to deduce the lane-change trajectories of tractor and trailer coupling characteristics of intelligent vehicles and roads. With different steering and braking maneuvers, minimum safe distances were modeled and calculated. Considering safety and ergonomics, the authors invested multilevel self-driving modes that serve as the basis of decision-making for vehicle lane-change. Furthermore, a combined controller was designed by feedback linearization and single-point preview optimization to ensure the path tracking and robust stability. Specialized hardware in the loop simulation platform was built to verify the effectiveness of the designed method.

Findings

The numerical simulation results demonstrated the path-planning model feasibility and controller-combined decision mechanism effectiveness to self-driving trucks. The proposed trajectory model could provide safety lane-change path planning, and the designed controller could ensure good tracking and robust stability for the closed-loop nonlinear system.

Originality/value

This is a fundamental research of intelligent local path planning and automatic control for articulated vehicles. There are two main contributions: the first is a more quantifiable trajectory model for self-driving articulated vehicles, which provides the opportunity to adapt vehicle and scene changes. The second involves designing a feedback linearization controller, combined with a multi-objective decision-making mode, to improve the comprehensive performance of intelligent vehicles. This study provides a valuable reference to develop advanced driving assistant system and intelligent control systems for self-driving articulated vehicles.

Details

Journal of Intelligent and Connected Vehicles, vol. 3 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 9 July 2020

Hatana El-Jarn and Glen Southern

The purpose of this paper is to explore the benefits of co-creation/co-design using extended reality (XR) technologies during the initial stages of the design process. A review of…

3630

Abstract

Purpose

The purpose of this paper is to explore the benefits of co-creation/co-design using extended reality (XR) technologies during the initial stages of the design process. A review of the emerging co-creation tools within XR will be examined along with whether they offer the potential to improve the design process; this will also highlight the gaps on where further research is required.

Design/methodology/approach

The paper draws on professional and academic experiences of the authors in creative practices within the realm of XR technology, co-creation and co-design. In addition, a review of the current literature on emerging technologies and work-based learning will offer further insight on the themes covered.

Findings

To design, collaborate, iterate and amend with colleagues and peers in a virtual space gives a wide range of obvious benefits. Creative practitioners both in education and employment are working more collaboratively with the advancement of technology. However, there is a need to find a space where collaboration can also offer the opportunity for co-creation that improves the initial stages of the design process. This technology also offers solutions on the constraints of distance and ameliorates creative expression.

Research limitations/implications

There is an opportunity to test the ideas expressed in this paper empirically; this can be done through testing co-creation tools with professionals, work-based learners and students.

Originality/value

The paper will add to the existing literature on emerging technologies as a unique environment to improve co-create/co-design the visuals created during the fuzzy front end of the design process and offer a potential framework for future empirical work.

Details

Journal of Work-Applied Management, vol. 12 no. 2
Type: Research Article
ISSN: 2205-2062

Keywords

Open Access
Article
Publication date: 27 November 2023

J.I. Ramos and Carmen María García López

The purpose of this paper is to analyze numerically the blowup in finite time of the solutions to a one-dimensional, bidirectional, nonlinear wave model equation for the…

209

Abstract

Purpose

The purpose of this paper is to analyze numerically the blowup in finite time of the solutions to a one-dimensional, bidirectional, nonlinear wave model equation for the propagation of small-amplitude waves in shallow water, as a function of the relaxation time, linear and nonlinear drift, power of the nonlinear advection flux, viscosity coefficient, viscous attenuation, and amplitude, smoothness and width of three types of initial conditions.

Design/methodology/approach

An implicit, first-order accurate in time, finite difference method valid for semipositive relaxation times has been used to solve the equation in a truncated domain for three different initial conditions, a first-order time derivative initially equal to zero and several constant wave speeds.

Findings

The numerical experiments show a very rapid transient from the initial conditions to the formation of a leading propagating wave, whose duration depends strongly on the shape, amplitude and width of the initial data as well as on the coefficients of the bidirectional equation. The blowup times for the triangular conditions have been found to be larger than those for the Gaussian ones, and the latter are larger than those for rectangular conditions, thus indicating that the blowup time decreases as the smoothness of the initial conditions decreases. The blowup time has also been found to decrease as the relaxation time, degree of nonlinearity, linear drift coefficient and amplitude of the initial conditions are increased, and as the width of the initial condition is decreased, but it increases as the viscosity coefficient is increased. No blowup has been observed for relaxation times smaller than one-hundredth, viscosity coefficients larger than ten-thousandths, quadratic and cubic nonlinearities, and initial Gaussian, triangular and rectangular conditions of unity amplitude.

Originality/value

The blowup of a one-dimensional, bidirectional equation that is a model for the propagation of waves in shallow water, longitudinal displacement in homogeneous viscoelastic bars, nerve conduction, nonlinear acoustics and heat transfer in very small devices and/or at very high transfer rates has been determined numerically as a function of the linear and nonlinear drift coefficients, power of the nonlinear drift, viscosity coefficient, viscous attenuation, and amplitude, smoothness and width of the initial conditions for nonzero relaxation times.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 10 December 2021

Pingan Zhu, Chao Zhang and Jun Zou

The purpose of the work is to provide a comprehensive review of the digital image correlation (DIC) technique for those who are interested in performing the DIC technique in the…

Abstract

Purpose

The purpose of the work is to provide a comprehensive review of the digital image correlation (DIC) technique for those who are interested in performing the DIC technique in the area of manufacturing.

Design/methodology/approach

No methodology was used because the paper is a review article.

Findings

no fundings.

Originality/value

Herein, the historical development, main strengths and measurement setup of DIC are introduced. Subsequently, the basic principles of the DIC technique are outlined in detail. The analysis of measurement accuracy associated with experimental factors and correlation algorithms is discussed and some useful recommendations for reducing measurement errors are also offered. Then, the utilization of DIC in different manufacturing fields (e.g. cutting, welding, forming and additive manufacturing) is summarized. Finally, the current challenges and prospects of DIC in intelligent manufacturing are discussed.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 2 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 5 September 2016

Mario Rosario Chiarelli, Vincenzo Binante, Stefano Botturi, Andrea Massai, Jan Kunzmann, Angelo Colbertaldo and Diego Giuseppe Romano

The purpose of this study concerns numerical studies and experimental validation of the mechanical behavior of hybrid specimens. These kinds of composite specimens are made up of…

1123

Abstract

Purpose

The purpose of this study concerns numerical studies and experimental validation of the mechanical behavior of hybrid specimens. These kinds of composite specimens are made up of thin carbon and glass substrates on which some Macro Fiber Composite® (MFC) piezoelectric patches are glued. A proper design and manufacturing of the hybrid specimens as well as testing activities have been performed. The research activity has been carried out under the FutureWings project, funded by the European Commission within the 7th Framework.

Design/methodology/approach

The paper describes the basic assumptions made to define specimen geometries and to carry out experimental tests. Finite element (FE) results and experimental data (laser technique measurements) have been compared: it shows very good agreement for the displacements’ distribution along the specimens.

Findings

Within the objectives of the project, the study of passive and active deformation characteristics of the hybrid composite material has provided reference technical data and has allowed for the correct adaptation of the FE models. More in particular, using the hybrid specimens, both the bending deformations and the torsion deformations have been studied.

Practical implications

The deformation capability of the hybrid specimens will be used in the development of prototypical three-dimensional structures, that, through the electrical control of the MFC patches, will be able to change the curvature of their cross section or will be able to change the angle of torsion along their longitudinal axis.

Originality/value

The design of nonstandard specimens and the tests executed represent a novelty in the field of structures using piezoelectric actuators. The numerical and experimental data of the present research constitute a small step forward in the field of smart materials technology.

Details

Aircraft Engineering and Aerospace Technology, vol. 88 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 10