Search results

1 – 10 of 122
Article
Publication date: 1 August 1996

Jacqueline R. Postle and Ron Postle

Aims to analyse unique deformation properties of textile materials in terms of basic mechanical properties. Models fabric deformation as a nonlinear dynamical system so that a…

Abstract

Aims to analyse unique deformation properties of textile materials in terms of basic mechanical properties. Models fabric deformation as a nonlinear dynamical system so that a fabric can be completely specified in terms of its mechanical behaviour under general boundary conditions. Fabric deformation is dynamically analogous to waves travelling in a fluid. A localized two‐dimensional deformation evolves through the fabric to form a three‐dimensional drape or fold configuration. The nonlinear differential equations arising in the analysis of fabric deformation belong to the Klein‐Gordon family of equations which becomes the sine‐Gordon equation in three dimensions. The sine‐Gordon equation has its origins in the study of Bäcklund Transformations in differential geometry. Describes fabric deformation as a series of transformations of surfaces, defined in terms of curvature parameters using Gaussian representation of surfaces. By considering a deformed fabric as a two‐dimensional surface, algebraically constructs analytical solutions of fabric deformation by solving the sine‐Gordon Equation. The theory of Bäcklund Transformations is used to transform a trivial solution into a series of solitary wave solutions. These analytical expressions describing the curvature parameters of a surface represent actual solutions of fabric dynamical systems.

Details

International Journal of Clothing Science and Technology, vol. 8 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 6 August 2021

Yasir Khan

Nizhnik–Novikov–Veselov system (NNVS) is a well-known isotropic extension of the Lax (1 + 1) dimensional Korteweg-deVries equation that is also used as a paradigm for an…

Abstract

Purpose

Nizhnik–Novikov–Veselov system (NNVS) is a well-known isotropic extension of the Lax (1 + 1) dimensional Korteweg-deVries equation that is also used as a paradigm for an incompressible fluid. The purpose of this paper is to present a fractal model of the NNVS based on the Hausdorff fractal derivative fundamental concept.

Design/methodology/approach

A two-scale transformation is used to convert the proposed fractal model into regular NNVS. The variational strategy of well-known Chinese scientist Prof. Ji Huan He is used to generate bright and exponential soliton solutions for the proposed fractal system.

Findings

The NNV fractal model and its variational principle are introduced in this paper. Solitons are created with a variety of restriction interactions that must all be applied equally. Finally, the three-dimensional diagrams are displayed using an appropriate range of physical parameters. The results of the solitary solutions demonstrated that the suggested method is very accurate and effective. The proposed methodology is extremely useful and nearly preferable for use in such problems.

Practical implications

The research study of the soliton theory has already played a pioneering role in modern nonlinear science. It is widely used in many natural sciences, including communication, biology, chemistry and mathematics, as well as almost all branches of physics, including nonlinear optics, plasma physics, fluid dynamics, condensed matter physics and field theory, among others. As a result, while constructing possible soliton solutions to a nonlinear NNV model arising from the field of an incompressible fluid is a popular topic, solving nonlinear fluid mechanics problems is significantly more difficult than solving linear ones.

Originality/value

To the best of the authors’ knowledge, for the first time in the literature, this study presents Prof. Ji Huan He's variational algorithm for finding and studying solitary solutions of the fractal NNV model. The reported solutions are novel and present a valuable addition to the literature in soliton theory.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 April 2024

Abdul-Majid Wazwaz

This study aims to investigate two newly developed (3 + 1)-dimensional Kairat-II and Kairat-X equations that illustrate relations with the differential geometry of curves and…

Abstract

Purpose

This study aims to investigate two newly developed (3 + 1)-dimensional Kairat-II and Kairat-X equations that illustrate relations with the differential geometry of curves and equivalence aspects.

Design/methodology/approach

The Painlevé analysis confirms the complete integrability of both Kairat-II and Kairat-X equations.

Findings

This study explores multiple soliton solutions for the two examined models. Moreover, the author showed that only Kairat-X give lump solutions and breather wave solutions.

Research limitations/implications

The Hirota’s bilinear algorithm is used to furnish a variety of solitonic solutions with useful physical structures.

Practical implications

This study also furnishes a variety of numerous periodic solutions, kink solutions and singular solutions for Kairat-II equation. In addition, lump solutions and breather wave solutions were achieved from Kairat-X model.

Social implications

The work formally furnishes algorithms for studying newly constructed systems that examine plasma physics, optical communications, oceans and seas and the differential geometry of curves, among others.

Originality/value

This paper presents an original work that presents two newly developed Painlev\'{e} integrable models with insightful findings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 1998

Ron Postle and Jacqueline Rebecca Postle

The buckling behaviour of engineering materials has been researched extensively since the 1890s and more recently, thin shell theory has generalised the analysis to include…

Abstract

The buckling behaviour of engineering materials has been researched extensively since the 1890s and more recently, thin shell theory has generalised the analysis to include complicated boundary conditions. However, the approximations and assumptions which form the basis of engineering models make them inappropriate for textile materials. Very small stresses on textile materials cause extremely large strains so that the deformations are highly nonlinear. In this paper, we develop a nonlinear mathematical method. In the final section, the nonlinear differential equations used are generalised into a nonlinear evolution equation which is completely integrable and thus solved analytically obtaining dynamical solution for three‐dimensional fabric drape. These analytical solutions are applicable under all conditions and are not subject to computational difficulties associated with finding numerical solutions for highly nonlinear problems. The use of this analytical approach to fabric mechanics and dynamics provides us with a very powerful tool to formulate and solve many long‐standing problems in fabric and clothing technology.

Details

International Journal of Clothing Science and Technology, vol. 10 no. 3/4
Type: Research Article
ISSN: 0955-6222

Keywords

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Article
Publication date: 4 December 2018

Kang Xiaorong and Xian Daquan

The purpose of this paper is to discuss the homoclinic breathe-wave solutions and the singular periodic solutions for (2 + 1)-dimensional generalized shallow water wave (GSWW…

Abstract

Purpose

The purpose of this paper is to discuss the homoclinic breathe-wave solutions and the singular periodic solutions for (2 + 1)-dimensional generalized shallow water wave (GSWW) equation.

Design/methodology/approach

The Hirota bilinear method, the Lie symmetry method and the non-Lie symmetry method are applied to the (2 + 1)D GSWW equation.

Findings

A reduced (1 + 1)D potential KdV equation can be derived, and its soliton solutions are also presented.

Research limitations/implications

As a typical nonlinear evolution equation, some dynamical behaviors are also discussed.

Originality/value

These results are very useful for investigating some localized geometry structures of dynamical behaviors and enriching dynamical features of solutions for the higher dimensional systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 May 2021

Sachin Kumar, Rajesh Kumar Gupta and Pinki Kumari

This study aims to find the symmetries and conservation laws of a new Painlevé integrable Broer-Kaup (BK) system with variable coefficients. This system is an extension of…

Abstract

Purpose

This study aims to find the symmetries and conservation laws of a new Painlevé integrable Broer-Kaup (BK) system with variable coefficients. This system is an extension of dispersive long wave equations. As the system is generalized and new, it is essential to explore some of its possible aspects such as conservation laws, symmetries, Painleve integrability, etc.

Design/methodology/approach

This paper opted for an exploratory study of a new Painleve integrable BK system with variable coefficients. Some analytic solutions are obtained by Lie classical method. Then the conservation laws are derived by multiplier method.

Findings

This paper presents a complete set of point symmetries without any restrictions on choices of coefficients, which subsequently yield analytic solutions of the series and solitary waves. Next, the authors derive every admitted non-trivial conservation law that emerges from multipliers.

Research limitations/implications

The authors have found that the considered system is likely to be integrable. So some other aspects such as Lax pair integrability, solitonic behavior and Backlund transformation can be analyzed to check the complete integrability further.

Practical implications

The authors develop a time-dependent Painleve integrable long water wave system. The model represents more specific data than the constant system. The authors presented analytic solutions and conservation laws.

Originality/value

The new time-dependent Painleve integrable long water wave system features some interesting results on symmetries and conservation laws.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Article
Publication date: 8 January 2020

Abdul-Majid Wazwaz

The purpose of this paper is to introduce two new (3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli (BLMP) equations, the first with constant coefficients and the other with…

Abstract

Purpose

The purpose of this paper is to introduce two new (3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli (BLMP) equations, the first with constant coefficients and the other with time-dependent coefficients. The author obtains multiple soliton solutions and multiple complex soliton solutions for the two developed models.

Design/methodology/approach

The newly developed models with constant coefficients and with time-dependent coefficients have been handled by using the simplified Hirota’s method. The author also uses the complex Hirota’s criteria for deriving multiple complex soliton solutions.

Findings

The two developed BLMP models exhibit complete integrability for any constant coefficient and any analytic time-dependent coefficients by investigating the compatibility conditions for each developed model.

Research limitations/implications

The paper presents an efficient algorithm for handling integrable equations with constant and analytic time-dependent coefficients.

Practical implications

The paper presents two new integrable equations with a variety of coefficients. The author showed that integrable equations with constant and time-dependent coefficients give real and complex soliton solutions.

Social implications

The paper presents useful algorithms for finding and studying integrable equations with constant and time-dependent coefficients.

Originality/value

The paper presents an original work with a variety of useful findings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 October 2020

Abdul-Majid Wazwaz

This study aims to develop a new (3 + 1)-dimensional Painlevé-integrable extended Vakhnenko–Parkes equation. The author formally derives multiple soliton solutions for this…

Abstract

Purpose

This study aims to develop a new (3 + 1)-dimensional Painlevé-integrable extended Vakhnenko–Parkes equation. The author formally derives multiple soliton solutions for this developed model.

Design/methodology/approach

The study used the simplified Hirota’s method for deriving multiple soliton solutions.

Findings

The study finds that the developed (3 + 1)-dimensional Vakhnenko–Parkes model exhibits complete integrability in analogy with the standard Vakhnenko–Parkes equation.

Research limitations/implications

This study addresses the integrability features of this model via using the Painlevé analysis. The study also reports multiple soliton solutions for this equation by using the simplified Hirota’s method.

Practical implications

The work reports extension of the (1 + 1)-dimensional standard equation to a (3 + 1)-dimensional model.

Social implications

The work presents useful algorithms for constructing new integrable equations and for handling these equations.

Originality/value

The paper presents an original work with newly developed integrable equation and shows useful findings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 122