Books and journals Case studies Expert Briefings Open Access
Advanced search

Search results

1 – 1 of 1
To view the access options for this content please click here
Article
Publication date: 5 September 2017

Subject-based retrieval of scientific documents, case study: Retrieval of Information Technology scientific articles

Azadeh Mohebi, Mehri Sedighi and Zahra Zargaran

The purpose of this paper is to introduce an approach for retrieving a set of scientific articles in the field of Information Technology (IT) from a scientific database…

HTML
PDF (1.4 MB)

Abstract

Purpose

The purpose of this paper is to introduce an approach for retrieving a set of scientific articles in the field of Information Technology (IT) from a scientific database such as Web of Science (WoS), to apply scientometrics indices and compare them with other fields.

Design/methodology/approach

The authors propose to apply a statistical classification-based approach for extracting IT-related articles. In this approach, first, a probabilistic model is introduced to model the subject IT, using keyphrase extraction techniques. Then, they retrieve IT-related articles from all Iranian papers in WoS, based on a Bayesian classification scheme. Based on the probabilistic IT model, they assign an IT membership probability for each article in the database, and then they retrieve the articles with highest probabilities.

Findings

The authors have extracted a set of IT keyphrases, with 1,497 terms through the keyphrase extraction process, for the probabilistic model. They have evaluated the proposed retrieval approach with two approaches: the query-based approach in which the articles are retrieved from WoS using a set of queries composed of limited IT keywords, and the research area-based approach which is based on retrieving the articles using WoS categorizations and research areas. The evaluation and comparison results show that the proposed approach is able to generate more accurate results while retrieving more articles related to IT.

Research limitations/implications

Although this research is limited to the IT subject, it can be generalized for any subject as well. However, for multidisciplinary topics such as IT, special attention should be given to the keyphrase extraction phase. In this research, bigram model is used; however, one can extend it to tri-gram as well.

Originality/value

This paper introduces an integrated approach for retrieving IT-related documents from a collection of scientific documents. The approach has two main phases: building a model for representing topic IT, and retrieving documents based on the model. The model, based on a set of keyphrases, extracted from a collection of IT articles. However, the extraction technique does not rely on Term Frequency-Inverse Document Frequency, since almost all of the articles in the collection share a set of same keyphrases. In addition, a probabilistic membership score is defined to retrieve the IT articles from a collection of scientific articles.

Details

Library Review, vol. 66 no. 6/7
Type: Research Article
DOI: https://doi.org/10.1108/LR-10-2016-0090
ISSN: 0024-2535

Keywords

  • Information technology
  • Information retrieval
  • Scientometrics
  • Document retrieval
  • Keyphrase extraction
  • Probabilistic modeling

Access
Only content I have access to
Only Open Access
Year
  • All dates (1)
Content type
  • Article (1)
1 – 1 of 1
Emerald Publishing
  • Opens in new window
  • Opens in new window
  • Opens in new window
  • Opens in new window
© 2021 Emerald Publishing Limited

Services

  • Authors Opens in new window
  • Editors Opens in new window
  • Librarians Opens in new window
  • Researchers Opens in new window
  • Reviewers Opens in new window

About

  • About Emerald Opens in new window
  • Working for Emerald Opens in new window
  • Contact us Opens in new window
  • Publication sitemap

Policies and information

  • Privacy notice
  • Site policies
  • Modern Slavery Act Opens in new window
  • Chair of Trustees governance statement Opens in new window
  • COVID-19 policy Opens in new window
Manage cookies

We’re listening — tell us what you think

  • Something didn’t work…

    Report bugs here

  • All feedback is valuable

    Please share your general feedback

  • Member of Emerald Engage?

    You can join in the discussion by joining the community or logging in here.
    You can also find out more about Emerald Engage.

Join us on our journey

  • Platform update page

    Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

  • Questions & More Information

    Answers to the most commonly asked questions here