Search results
1 – 1 of 1Oladosu Oyebisi Oladimeji and Ayodeji Olusegun J. Ibitoye
Diagnosing brain tumors is a process that demands a significant amount of time and is heavily dependent on the proficiency and accumulated knowledge of radiologists. Over the…
Abstract
Purpose
Diagnosing brain tumors is a process that demands a significant amount of time and is heavily dependent on the proficiency and accumulated knowledge of radiologists. Over the traditional methods, deep learning approaches have gained popularity in automating the diagnosis of brain tumors, offering the potential for more accurate and efficient results. Notably, attention-based models have emerged as an advanced, dynamically refining and amplifying model feature to further elevate diagnostic capabilities. However, the specific impact of using channel, spatial or combined attention methods of the convolutional block attention module (CBAM) for brain tumor classification has not been fully investigated.
Design/methodology/approach
To selectively emphasize relevant features while suppressing noise, ResNet50 coupled with the CBAM (ResNet50-CBAM) was used for the classification of brain tumors in this research.
Findings
The ResNet50-CBAM outperformed existing deep learning classification methods like convolutional neural network (CNN), ResNet-CBAM achieved a superior performance of 99.43%, 99.01%, 98.7% and 99.25% in accuracy, recall, precision and AUC, respectively, when compared to the existing classification methods using the same dataset.
Practical implications
Since ResNet-CBAM fusion can capture the spatial context while enhancing feature representation, it can be integrated into the brain classification software platforms for physicians toward enhanced clinical decision-making and improved brain tumor classification.
Originality/value
This research has not been published anywhere else.
Details