Search results

1 – 10 of 13
Article
Publication date: 5 July 2013

Miha Šrekl, Blaž Bratina, Mykhaylo Zagirnyak, Boris Benedičič and Damijan Miljavec

The purpose of this paper is the investigation of eddy currents induced in the axial‐flux permanent‐magnet machine housing by the leakage flux and the introduction of permanent

Abstract

Purpose

The purpose of this paper is the investigation of eddy currents induced in the axial‐flux permanent‐magnet machine housing by the leakage flux and the introduction of permanent magnets in the steady‐state AC finite‐element analysis and coupling their effects with the transient thermal analysis.

Design/methodology/approach

The proposed approach is based on the finite‐element method as well as on using the basic analytical equations. The approach was first applied in the magneto transient analyses. Because of the different physical transient‐time constants, the steady‐state AC analysis coupled with transient thermal should be used.

Findings

The permanent magnets in the steady‐state AC analysis coupled with the transient thermal analysis can be simulated by coils with an imposed current of a frequency depending on the number of pole pairs and rotation speed. Using any of the electrically conductive materials for the axial‐flux inner slotless stator permanent‐magnet machine housing should be avoided.

Originality/value

The leakage flux induced by permanent magnets and spreading into the axial‐flux permanent‐machine housing is first defined by using the magneto‐transient finite‐element analysis and further used in the steady‐state AC analysis coupled with the transient thermal analyses, all in 3D. Based on the results of these analyses, the temperature distribution in entire machine is calculated and compared with the measurement results.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 July 2008

Byung‐Jun Lee, Byoung‐Kuk Kim, Yun‐Hyun Cho, Yon‐Do Chun and Dae‐Hyun Koo

The purpose of this paper is to present the performance characteristics analysis of a new type axial flux permanent magnet (AFPM) machine according to the geometric structure of…

Abstract

Purpose

The purpose of this paper is to present the performance characteristics analysis of a new type axial flux permanent magnet (AFPM) machine according to the geometric structure of rotor such as permanent magnet dimension, the air‐gap length and so on.

Design/methodology/approach

The 3D finite element method (FEM) is used to analyse electromagnetic fields with the aid of an ANSYS software package. The FEM is based on the magnetic vector potential and the governing equation can be obtained from the Maxwell equation. Using the dynamometer system, the characteristics of the AFPM machine were estimated according to load torque.

Findings

The AFPM machine characteristics with static torque, cogging torque and flux density according to rotor geometric dimensions are analyzed using a 3D FEM software package. And then, the prototype of an AFPM machine and several rotors with different PM structure are manufactured and tested. Resulting from the experiment, the characteristics such as EMF waveform, speed and efficiency curves according to load torque, and efficiency curves according to PM thickness, are obtained. The measured performance results verified the overhang effects and improved the efficiency of the motor.

Originality/value

The paper proposes a new type AFPM machine structure with T‐shape teeth and laminated back yoke and two types of rotor with fan‐shaped permanent magnets. It presents the results of characteristics of the proposed AFPM machine throughout the simulation and experiment.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 July 2017

Naghi Rostami and Majid Rostami

The purpose of this paper is the fast and accurate modelling of surface-mounted Axial-Flux Permanent-Magnet (AFPM) machines equipped with cylindrical magnets using quasi-3D…

Abstract

Purpose

The purpose of this paper is the fast and accurate modelling of surface-mounted Axial-Flux Permanent-Magnet (AFPM) machines equipped with cylindrical magnets using quasi-3D approach. Furthermore, the accuracy of the method is improved by using leakage coefficient, saturation coefficient and an appropriate permeance function.

Design/methodology/approach

Quasi-3D approach is used for fast and accurate modelling of AFPM machines. Air-gap flux density distribution, induced back EMF, and produced cogging torque are calculated using the proposed method with reasonable accuracy.

Findings

The results obtained by quasi-3D approach compared to Finite-Element-Analyses (FEA) shows how accurate, fast and efficient this method is. It is proved that, this method can be successfully applied to evaluate the performance of the AFPM machines.

Originality/value

Effectiveness and accuracy of quasi-3D approach is assessed on different AFPM machines. Furthermore, to increase the accuracy of computations, the effects of the magnetic potential drop at iron parts of the machine are taken into account by using a saturation coefficient. Besides, the influence of the slot opening on the flux density distribution is taken into account by using an appropriate relative permeance function.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 May 2018

Reza Mirzahosseini, Ahmad Darabi and Mohsen Assili

Consideration of leakage fluxes in the preliminary design stage of a machine is important for accurate determination of machine dimensions and prediction of performance…

Abstract

Purpose

Consideration of leakage fluxes in the preliminary design stage of a machine is important for accurate determination of machine dimensions and prediction of performance characteristics. This paper aims to obtain some equations for calculating the average air gap flux density, the flux density within the magnet and the air gap leakage flux factor.

Design/methodology/approach

A detailed magnetic equivalent circuit (MEC) is presented for a TORUS-type non-slotted axial flux permanent magnet (TORUS-NS AFPM) machine. In this MEC, the leakage flux occurring between two adjacent magnets and the leakage fluxes taking place between the magnet and rotor iron at the interpolar, inner and outer edges of the magnets are considered. According to the proposed MEC and by using flux division law, some equations are extracted. A three-dimensional finite element method (FEM) is used to evaluate the proposed analytical equations. The study machine is a 3.7 kW and 1,400 rpm TORUS-NS AFPM machine.

Findings

The air gap leakage flux factor, the average air gap flux density and the flux density within the magnet are calculated using the proposed equations and FEM. All the results of FEM confirm the excellent accuracy of the proposed analytical method.

Originality/value

The new equations presented in this paper can be applied for leakage flux evaluating purposes.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 January 2018

Mohammadreza Baghayipour, Ahmad Darabi and Ali Dastfan

This paper aims to propose an analytical model for the harmonic content no-load magnetic fields and Back electric motive force (EMF) in double-sided TORUS-type non-slotted axial

Abstract

Purpose

This paper aims to propose an analytical model for the harmonic content no-load magnetic fields and Back electric motive force (EMF) in double-sided TORUS-type non-slotted axial flux permanent magnet (TORUS-NS AFPM) machines with surface-mounted magnets considering the winding distribution and iron saturation effects.

Design/methodology/approach

First, a procedure to calculate the winding distribution with a rectangular cross-section is proposed. The magnetic field distribution and magnetic motive force (MMF) drop due to saturation in iron cores are then exactly extracted in a 2-D analytical model. The consequent influence on air-gap magnetic field and Back EMF are also calculated using a new iterative algorithm. The results are compared with those of the conventional analytical model without saturation, 2-D finite element analysis (FEA) and an experiment on a fabricated prototype machine.

Findings

Unlike the conventional method, the new method yields the no-load magnetic field distributions in air-gap and iron cores and Back EMF very exactly such that the results well match to those of the FEA and experiment.

Originality/value

Unlike the conventional winding factor, the winding distribution is considered here along the both axial and circumferential directions, which improves the accuracy level of results for non-slotted structures with relatively large air-gaps. The magnetic field distribution and MMF drop-in iron parts are also calculated as the basis for exact recalculation of air-gap magnetic field and Back EMF. Because of small computational burden beside superior accuracy, the proposed model can be treated as an accurate and fast substitute for FEA to be used during the design procedure or for predicting the other performance characteristics of TORUS-NS AFPM machines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 December 2003

F. Sahin and A.J.A. Vandenput

This paper gives an overview of the design, manufacturing and testing of a high‐speed (16,000 rpm and 30 kW) AFPM synchronous machine, which is mounted inside, and as an integral…

Abstract

This paper gives an overview of the design, manufacturing and testing of a high‐speed (16,000 rpm and 30 kW) AFPM synchronous machine, which is mounted inside, and as an integral part of, a flywheel. This system will subsequently be used for transient energy storage and ICE operating point optimization in an HEV. The paper focuses on the major design issues, particularly with regard to the high rotational speed, and investigates the loss mechanisms which are apparent therein, e.g. iron losses, rotor losses, and friction losses. The paper describes the high‐speed testing facility and includes measured results, which will be compared to calculated values.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 22 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 24 June 2019

Lesław Gołębiowski, Marek Gołębiowski, Damian Mazur and Andrzej Smoleń

The purpose of this paper is to compare the methods of calculating the parameters of air-cored stator flux permanent magnet generator and to compare these results with the…

Abstract

Purpose

The purpose of this paper is to compare the methods of calculating the parameters of air-cored stator flux permanent magnet generator and to compare these results with the measurements of the designed and manufactured generator. The generator is to be designed for operation in a wind power plant.

Design/methodology/approach

An analytical method and 2D and 3D finite element methods (FEMs) were used to calculate the parameters of the coreless permanent magnet axial generator. The analytical method and 2D FEM were applied to individual cross-sections through the air gap of the machine. After the design and construction of the generator and measuring station, the results of calculations and measurements were compared.

Findings

The results of investigated calculation methods and measurements were found to be mutually compatible. Analytical methods and 2D FEM required proper interpretation of the results when comparing them with the 3D FEM. The results of the measurements and calculations showed the usefulness of the generator for operation in a wind power plant.

Originality/value

Full comparison of results of 2D and 3D calculations with the results of the measurements on the machine model confirmed the usefulness of fast 2D methods for the analysis of coreless generators. The results differed by the effects of leakage inductance of windings’ front connections. The application of an axial generator designed with the described methods in a wind turbine showed its proper operation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 March 2018

Javad Rahmani Fard and Mohammad Ardebili

The purpose of this paper is to propose a novel axial field flux-switching machine with sandwiched permanent magnets. It is one of the most efficient machines which is appropriate…

Abstract

Purpose

The purpose of this paper is to propose a novel axial field flux-switching machine with sandwiched permanent magnets. It is one of the most efficient machines which is appropriate for high-torque and low-speed direct-drive applications. The proposed model is equipped with an advanced phase-group concentrated-coil winding to obtain a unity displacement winding factor. Two configurations of the proposed motors with 6-stator-slot (S)/10-rotor-pole (P) and 12S/19P are investigated. These two structures are compared with optimized a conventional axial-field flux-switching permanent-magnet (CAFFSPM) machine. Unity displacement winding factor increases the back-EMF and electromagnetic torque. Moreover, the prototype 12S/19P motor is built to verify the design.

Design/methodology/approach

The torque equation is obtained and the dimensions of the two proposed motors are determined. Some specific design issues, including the stator/rotor pole sandwiching pole angle, the stator tooth angle and the rotor pole angle have been optimized to minimize the cogging torque while maintaining the high torque density by means of response surface methodology (RSM) and 3-D finite element model of the machine.

Findings

To improve the performance, especially at high torque density, low cogging torque and high level of fault-tolerant capability, the 12S/19P axial field flux-switching sandwiched permanent-magnet (AFFSSPM) motor is proposed. Based on the optimized design, a prototype of the 12S/19P AFFSSPM motor is fabricated and tested. It is found that the experimental results validate the 3-D finite element method (FEM) simulation results.

Originality/value

The AFFSSPM motor is one of the most efficient motors, but the 12S/19P AFFSSPM motor with sandwiched permanent magnet and unity displacement winding factor has not been specially reported to date. Thus, in this paper, the authors report on optimal design of a novel axial flux-switching sandwiched permanent-magnet machine for electric vehicles and fabricate a prototype of the 12S/19P AFFSSPM motor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2012

Łukasz Drązikowski and Włodzimierz Koczara

This article seeks to present the simple and easy to manufacture design of a permanent magnet generator based on coreless windings. An example is shown of basic calculations based…

Abstract

Purpose

This article seeks to present the simple and easy to manufacture design of a permanent magnet generator based on coreless windings. An example is shown of basic calculations based on an equivalent magnetic circuit. Finally, a description of a 20 kW prototype of PMSG is presented based on rectangular magnets which contains mechanical design and experimental results.

Design/methodology/approach

The analysis presents flux dependence using several parameters such as: magnet's grade and size in comparison with coil and air‐gap dimensions. The second part of the article concentrates on simulation results of Finite Element Method analysis (FEM) that clearly shows the flux distribution for different magnet shapes – trapezoidal and rectangular.

Findings

The presented topology of the machine has several advantages, e.g. there is no starting and cogging torque which is very important especially for wind power systems because of the start up point of the turbine. Moreover, it is cheap and easy to manufacture because of ironless technology in stator. The generator can be produced in the range of single watts up to hundreds of kilo watts of power in multi disk operation.

Research limitations/implications

The ironless technology applied to the stator, results in the need for using stronger magnets in comparison with a classic iron‐core permanent magnet machine.

Practical implications

This axial‐flux machine seems to be very interesting for low speed power generation systems such as wind and water turbines. Cost effective permanent magnet generator can be used for local power generation (e.g. heating). The generator can also be connected to the main grid through a special grid‐tie‐inverter.

Originality/value

The article presents the simple and rarely presented topology and describes a few methods of optimisation of the parameters to achieve maximum power.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 24 November 2022

Hadi Karimi Aliabad and Mohammadreza Baghayipour

This paper aims to propose a novel simple and efficient structure for line-start axial-flux permanent magnet (LSAFPM) synchronous motor, especially regarding the permanent magnets

Abstract

Purpose

This paper aims to propose a novel simple and efficient structure for line-start axial-flux permanent magnet (LSAFPM) synchronous motor, especially regarding the permanent magnets (PMs) demagnetization reduction.

Design/methodology/approach

At first, a primitive raw scheme of the new structure for the LSAFPM motor is introduced. Considering this raw scheme, the levels of irreversible demagnetization in various regions throughout the entire volume of each PM are evaluated using 3 dimensional (3D) finite elements analysis (3D FEA) in full loading condition during startup until reaching steady state. Based on the results of these analyses, the primitive structural scheme is then modified through segmenting (cutting into four pieces) each PM from where the worst irreversible demagnetization levels occurred.

Findings

As will be demonstrated by the results of 3D FEA, the proposed modified structure is not only capable of successful startup and synchronization of the motor but also it considerably reduces the PM demagnetization level. Thus, the performance of the motor is significantly improved.

Originality/value

The demagnetization of PMs is an important effect in PM synchronous motors, which can greatly affect motor performance. Therefore, it is necessary to be considered in the motor design processes. This effect becomes much more significant in the line-start PM motors because the usual high-magnitude startup induction current produces a strong armature-reaction magnetic field, which may cause the PMs to be irreversibly demagnetized. The approach proposed in this paper provides a structural solution to mitigate the PM demagnetization effect and thereby improve the performance of an LSAFPM motor through modifying the structure of the LSAFPM motor according to an FEA-based PM demagnetization analysis. As a considerable contribution, in this analysis, the variation of demagnetization level between different areas inside each PM is computed and is considered as a basis for proposing an appropriate structural modification to mitigate the PM demagnetization effect as much as possible.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 13