Search results

1 – 10 of 122
Article
Publication date: 3 November 2021

Ali Muhammad, Faisal Khan, Muhammad Yousuf and Basharat Ullah

The purpose of this paper is to modernize the generator system of wind turbine concept that not only improves the efficiency and power density but also reduces the system cost…

Abstract

Purpose

The purpose of this paper is to modernize the generator system of wind turbine concept that not only improves the efficiency and power density but also reduces the system cost making design simpler and less expensive, especially in large-scale production.

Design/methodology/approach

This paper presents a new permanent magnet transverse flux generator (PMTFG) for wind energy production. The key feature of its composition is the double armature coil in a semi-closed stator core. The main structural difference of the presented design is the use of double coil in the same space of semi-closed stator core and reduced number of stator pole pairs and rotor magnets from 12/24 to 10/20. 3D simulations are performed using finite element analysis (FEA) to measure induced voltage and magnetic field distribution at no load. The FEA is performed to quantify the change in flux linkage, induced voltage and output power as a function of different speeds and load current.

Findings

Results show that PMTFG with double coil configuration has improved electromagnetic performance in terms of flux linkage, induced voltage, output power and efficiency. The power density of 10/20 PMTFG with the double coil is 0.0524 KW/Kg, about an 18% increase compared to the conventional design.

Research limitations/implications

The proposed PMTFG is highly recommended for direct drive applications such as wind power.

Originality/value

Four models are simulated by FEA with single and double coil configuration, and load analysis is performed on all simulated models. Finally, results are compared with conventional PMTFG.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 April 2024

Shiang-Wuu Perng, Horng Wen Wu and De-An Huang

The purpose of this study is to advance turbulent thermal convection inside the constant heat-flux round tube inserted by multiple perforated twisted tapes.

Abstract

Purpose

The purpose of this study is to advance turbulent thermal convection inside the constant heat-flux round tube inserted by multiple perforated twisted tapes.

Design/methodology/approach

The novel design of this study is accomplished by inserting several twisted tapes and drilling some circular perforations near the tape edge (C1, C3, C5: solid tapes; C2, C4, C6: perforated tapes). The turbulence flow appearances and thermal convective features are examined for various Reynolds numbers (8,000–14,000) using the renormalization group (RNG) κε turbulent model and Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm.

Findings

The simulated outcomes reveal that inserting more perforated-twisted tapes into the heated round tube promotes turbulent thermal convection effectively. A swirling flow caused by the twisted tapes to produce the secondary flow jets between two reverse-spin tapes can combine with the main flow passing through the perforations at the outer edge to enhance the vortex flow. The primary factors are the quantity of twisted tapes and with/without perforations, as the perforation ratio remains at 2.5 in this numerical work. Weighing friction along the tube, C6 (four reverse-spin perforated-twisted tapes) brings the uppermost thermal-hydraulic performance of 1.23 under Re = 8,000.

Research limitations/implications

The constant thermo-hydraulic attributes of liquid water and the steady Newtonian fluid are research limitations for this simulated work.

Practical implications

The simulated outcomes will avail the inner-pipe design of a heat exchanger inserted by multiple perforated twisted tapes to enhance superior heat transfer.

Originality/value

These twisted tapes form tiny circular perforations along the tape edge to introduce the fluid flow through these bores and combine with the secondary flow induced between two reverse-spin tapes. This scheme enhances the swirling flow, turbulence intensity and fluid mixing to advance thermal convection since larger perforations cannot produce large jet velocity or the position of perforations is too far from the tape edge to generate a separated flow. Consequently, this work contributes a valuable cooling mechanism toward thermal engineering.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 2023

Mohamed Amine Hebri, Abderrahmane Rebhaoui, Gregory Bauw, Jean-Philippe Lecointe, Stéphane Duchesne, Gianluca Zito, Abdelli Abdenour, Victor Mediavilla Santos, Vincent Mallard and Adrien Maier

The purpose of this paper is to exploit the optimal performances of each magnetic material in terms of low iron losses and high saturation flux density to improve the efficiency…

Abstract

Purpose

The purpose of this paper is to exploit the optimal performances of each magnetic material in terms of low iron losses and high saturation flux density to improve the efficiency and the power density of the selected motor.

Design/methodology/approach

This paper presents a study to improve the power density and efficiency of e-motors for electric traction applications with high operating speed. The studied machine is a yokeless-stator axial flux permanent magnet synchronous motor with a dual rotor. The methodology consists in using different magnetic materials for an optimal design of the stator and rotor magnetic circuits to improve the motor performance. The candidate magnetic materials, adapted to the constraints of e-mobility, are made of thin laminations of Si-Fe nonoriented grain electrical steel, Si-Fe grain-oriented electrical steel (GOES) and iron-cobalt Permendur electrical steel (Co-Fe).

Findings

The mixed GOES-Co-Fe structure allows to reach 10 kW/kg in rated power density and a high efficiency in city driving conditions. This structure allows to make the powertrain less energy consuming in the battery electric vehicles and to reduce CO2 emissions in hybrid electric vehicles.

Originality/value

The originality of this study lies in the improvement of both power density and efficiency of the electric motor in automotive application by using different magnetic materials through a multiobjective optimization.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 January 2023

Javad Rahmani Fard, Saadat Jamali Arand and Siroos Hemmati

In this paper, an improved multiobjective particle swarm optimization (PSO) algorithm is proposed to optimize a three-phase, 12-slot, 19-pole, yokeless axial-field flux-switching…

Abstract

Purpose

In this paper, an improved multiobjective particle swarm optimization (PSO) algorithm is proposed to optimize a three-phase, 12-slot, 19-pole, yokeless axial-field flux-switching permanent magnet (YASA-AFFSPM) motor.

Design/methodology/approach

Based on the structural characteristics of the YASA-AFFSPM, a mathematical model is established to calculate the main size of the YASA-AFFSPM motor. The split ratio, stator axial length, sandwiching pole angle, rotor pole angle, PM arc and number of conductors per slot are selected as optimization variables. Also, the efficiency, power factor, cogging torque and average torque are considered as the optimization objectives. The objectives are optimized by combining the improved multiobjective PSO algorithm with electromagnetic calculation.

Findings

Based on the proposed algorithm, the investigated motor is optimized. The on-load efficiency, power factor and average torque of the motor performance have increased by 0.87%, 3.13% and 10.39%, respectively. Moreover, the cogging torque and slot fill factor have undergone decreases of 8.57% and 3.34%, respectively. Finally, the effectiveness of the algorithm is verified using experiment results.

Originality/value

So far, no comprehensive report has been observed on the optimization of the YASA-AFFSPM motor using evolutionary algorithms and the study of the effect of the motor parameters. Therefore, in this paper, the authors decided to investigate the effect of YASA-AFFSPM motor parameters and improve motor performance with the improved PSO method.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 24 November 2022

Hadi Karimi Aliabad and Mohammadreza Baghayipour

This paper aims to propose a novel simple and efficient structure for line-start axial-flux permanent magnet (LSAFPM) synchronous motor, especially regarding the permanent magnets…

Abstract

Purpose

This paper aims to propose a novel simple and efficient structure for line-start axial-flux permanent magnet (LSAFPM) synchronous motor, especially regarding the permanent magnets (PMs) demagnetization reduction.

Design/methodology/approach

At first, a primitive raw scheme of the new structure for the LSAFPM motor is introduced. Considering this raw scheme, the levels of irreversible demagnetization in various regions throughout the entire volume of each PM are evaluated using 3 dimensional (3D) finite elements analysis (3D FEA) in full loading condition during startup until reaching steady state. Based on the results of these analyses, the primitive structural scheme is then modified through segmenting (cutting into four pieces) each PM from where the worst irreversible demagnetization levels occurred.

Findings

As will be demonstrated by the results of 3D FEA, the proposed modified structure is not only capable of successful startup and synchronization of the motor but also it considerably reduces the PM demagnetization level. Thus, the performance of the motor is significantly improved.

Originality/value

The demagnetization of PMs is an important effect in PM synchronous motors, which can greatly affect motor performance. Therefore, it is necessary to be considered in the motor design processes. This effect becomes much more significant in the line-start PM motors because the usual high-magnitude startup induction current produces a strong armature-reaction magnetic field, which may cause the PMs to be irreversibly demagnetized. The approach proposed in this paper provides a structural solution to mitigate the PM demagnetization effect and thereby improve the performance of an LSAFPM motor through modifying the structure of the LSAFPM motor according to an FEA-based PM demagnetization analysis. As a considerable contribution, in this analysis, the variation of demagnetization level between different areas inside each PM is computed and is considered as a basis for proposing an appropriate structural modification to mitigate the PM demagnetization effect as much as possible.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 September 2023

Nikesh Chowrasia, Subramani S.N., Harish Pothukuchi and B.S.V. Patnaik

Subcooled flow boiling phenomenon is characterized by coolant phase change in the vicinity of the heated wall. Although coolant phase change from liquid to vapour phase…

Abstract

Purpose

Subcooled flow boiling phenomenon is characterized by coolant phase change in the vicinity of the heated wall. Although coolant phase change from liquid to vapour phase significantly enhances the heat transfer coefficient due to latent heat of vaporization, eventually the formed vapor bubbles may coalesce and deteriorate the heat transfer from the heated wall to the liquid phase. Due to the poor heat transfer characteristics of the vapour phase, the heat transfer rate drastically reduces when it reaches a specific value of wall heat flux. Such a threshold value is identified as critical heat flux (CHF), and the phenomenon is known as departure from nucleate boiling (DNB). An accurate prediction of CHF and its location is critical to the safe operation of nuclear reactors. Therefore, the present study aims at the prediction of DNB type CHF in a hexagonal sub-assembly.

Design/methodology/approach

Computational fluid dynamics (CFD) simulations are performed to predict DNB in a hexagonal sub-assembly. The methodology uses an Eulerian–Eulerian multiphase flow (EEMF) model in conjunction with multiple size group (MuSiG) model. The breakup and coalescence of vapour bubbles are accounted using a population balance approach.

Findings

Bubble departure diameter parameters in EEMF framework are recalibrated to simulate the near atmospheric pressure conditions. The predictions from the modified correlation for bubble departure diameter are found to be in good agreement against the experimental data. The simulations are further extended to investigate the influence of blockage (b) on DNB type CHF at low operating pressure conditions. Larger size vapour bubbles are observed to move away from the corner sub-channel region due to the presence of blockage. Corner sub-channels were found to be more prone to experience DNB type CHF compared to the interior and edge sub-channels.

Practical implications

An accurate prediction of CHF and its location is critical to the safe operation of nuclear reactors. Moreover, a wide spectrum of heat transfer equipment of engineering interest will be benefited by an accurate prediction of wall characteristics using breakup and coalescence-based models as described in the present study.

Originality/value

Simulations are performed to predict DNB type CHF. The EEMF and wall heat flux partition model framework coupled with the MuSiG model is novel, and a detailed variation of the coolant velocity, temperature and vapour volume fraction in a hexagonal sub-assembly was obtained. The present CFD model framework was observed to predict the onset of vapour volume fraction and DNB type CHF. Simulations are further extended to predict CHF in a hexagonal sub-assembly under the influence of blockage. For all the values of blockage, the vapour volume fraction is found to be higher in the corner region, and thus the corner sub-channel experiences CHF. Although DNB type CHF is observed in corner sub-channel, it is noticed that the presence of blockage in the interior sub-channel promotes the coolant mixing and results in higher values of CHF in the corner sub-channel.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 April 2022

Sumeet Khalid, Faisal Khan, Basharat Ullah, Zahoor Ahmad and Siddique Akbar

This paper aims to provide an overview of the recent developments and new topologies of single-phase moving magnet linear oscillating actuators (MMLOAs). The key advantage of the…

Abstract

Purpose

This paper aims to provide an overview of the recent developments and new topologies of single-phase moving magnet linear oscillating actuators (MMLOAs). The key advantage of the MMLOA when compared with conventional LOA is the absence of screws, gears and crankshaft mechanism, which results in fewer mechanical parts, simple structure, easy fabrication, lower noise levels and negligible frictional losses.

Design/methodology/approach

The review included papers up to August 2021. The structural designs of alternative topologies are deliberated in detail, and their relative merits and demerits are evaluated. Specific design issues, including pole and tooth number combinations, stroke length, magnet pole ratio and split ratio, are investigated. The imperative phenomena of the resonance, as well as the adjustable stroke, are also discussed in detail.

Findings

The electromagnetic performance in terms of thrust force of selected MMLOA topologies is compared. It is observed that the MMLOA with flux bridge topology has the highest thrust force of 365 N because of the large volume of the permanent magnets (PMs) used, which consequently increased the mass of the mover but based on overall performance analysis, single-phase end ferromagnetic Halbach surface-mounted PM LOA has the highest efficiency around 92%.

Originality/value

This review provides a comparative analysis for different tubular MMLOA topologies based on design construction and their electromagnetic performances.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Abstract

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 4
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 3 November 2023

Cheng Peng, He Cheng, Tong Zhang, Jing Wu, Fandi Lin and Jinglong Chu

This paper aims to further develop stator permanent magnet (PM) type memory machines by providing generalized design guidelines for double-stator memory machines (DSMMs) with…

54

Abstract

Purpose

This paper aims to further develop stator permanent magnet (PM) type memory machines by providing generalized design guidelines for double-stator memory machines (DSMMs) with hybrid PMs. This paper discusses the design experience of DSMMs and presents a comparative study of radial magnetization (RM) and circumferential magnetization (CM) types.

Design/methodology/approach

It begins with an introduction to RM and CM operating principles and magnetization mechanisms. Then, a comparative study is conducted for one of the RM-DSMM rotor pole pairs, inner and outer stator clamping angles and low coercive force PMs thickness. Finally, the two machines’ finite element simulation performance is compared. The validity of the proposed machine structure is demonstrated.

Findings

In this paper, the double-stator structure is extended to parallel hybrid PM memory machines, and two novel DSMMs with RM and CM configurations are proposed. Two types of DSMMs have PMs and magnetizing windings on the inner stator and armature windings on the outer stator. The main difference between the two is the arrangement of PMs on the inner stator.

Originality/value

Conventional stator PM memory machines have geometrical space conflicts between the PM and armature windings. The proposed double-stator structure can alleviate these conflicts and increase the torque density accordingly. In addition, this paper contributes to comparing the arrangement of hybrid PMs for DSMMs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 25 April 2023

Ali Hashemi, Parsa Yazdanpanah Qaraei and Mostafa Shabanian

An excessive increase in temperature will reduce the lifespan and even burn the coil. The variety of materials in the structure of the electromagnet along with its multi-layer…

Abstract

Purpose

An excessive increase in temperature will reduce the lifespan and even burn the coil. The variety of materials in the structure of the electromagnet along with its multi-layer winding creates a complex and heterogeneous thermal structure. There are very few researches that are completely focused on the thermal analysis of electromagnets. The purpose of this paper is to provide an accurate, yet fast and simple method for the thermal analysis of cylindrical electromagnets in both transient and steady-state modes. For this purpose, a thermal equivalent circuit (TEC) is presented based on the nodding approach.

Design/methodology/approach

The results of TEC analysis of cylindrical electromagnet, for two orthogonal and orthocyclic winding coil technologies, were compared with the results of the thermal simulation in COMSOL. The authors also built a laboratory model of the cylindrical electromagnet, similar to those analyzed and simulated, and measured the temperature in different parts of it.

Findings

The comparison of the results obtained from different methods for the thermal analysis of the cylindrical electromagnet indicates that the proposed TEC has an error of less than 2%. The simplicity and high accuracy of the results are the most important advantages of the proposed TEC.

Originality/value

Comparing the information and results related to winding schemes, indicates that the orthogonal winding has less cost and weight due to the shorter length of the wire used. On the other hand, orthocyclic winding generates lower temperature and has more lifting force, and is simpler to implement. Therefore, in practice, orthocyclic winding technology is usually used.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 122