Search results

21 – 30 of 194
Article
Publication date: 27 September 2023

Md Atiqur Rahman

The purpose of this experimental research was to examine a novel axial heat exchanger featuring swirling air movement over heated tubes. This apparatus is designed with perforated…

26

Abstract

Purpose

The purpose of this experimental research was to examine a novel axial heat exchanger featuring swirling air movement over heated tubes. This apparatus is designed with perforated circular baffle plates complemented by rectangular air deflectors operating at different inclination angles. The tubes were arranged in a consistent layout parallel to the longitudinal airflow. The deflector’s heightened air-side turbulence initiates the frenzied motion, escalating the surface heat transfer rate.

Design/methodology/approach

The tubes maintained a constant heat flux condition over the surface. In each baffle plate, eight deflectors with identical inclination angles were devised in a reverse position, forming a rotation of air inside a circular duct that held tubes (carrying hot water) which elevated air-side turbulence, thereby enhancing the rate of heat transference on the surface. The baffle plates were equally situated from each other at changing pitch ratios. The Reynolds quantity was preserved in the scope of 16,000–30,000. The performance of the heat exchanger considering pitch ratios and inclination angles was examined.

Findings

The research indicates that when examined under similar conditions, an exchanger with a deflector baffle plate shows a strong dependence on the pitch ratio and inclination angle with a mean rise of 0.19 times in thermal enhancement factor at an inclination angle of 30° and a pitch ratio of 1.2 contrasted with an exchanger with segmental baffle plates.

Originality/value

The result shows the dependence of pitch ratio, Reynolds number and inclination on the heat transfer and friction factor rate.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 January 1957

W.A.M., J.H., S.L.B., D.B.S. and J.E.D.

This is a reprint of a book that was first published in 1932. As there has been no revision of the contents since the original publication, no work done in the last twenty‐five…

Abstract

This is a reprint of a book that was first published in 1932. As there has been no revision of the contents since the original publication, no work done in the last twenty‐five years is included. Nevertheless, the book includes a con‐siderable amount of material that is still of interest.

Details

Aircraft Engineering and Aerospace Technology, vol. 29 no. 1
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 June 1985

Texas Eastern, PIH and BRIT in research contract. Pipeline Induction Heat, the specialist pipeline technology company based in High Wycombe, U.K. and Texas Eastern North Sea, Inc…

Abstract

Texas Eastern, PIH and BRIT in research contract. Pipeline Induction Heat, the specialist pipeline technology company based in High Wycombe, U.K. and Texas Eastern North Sea, Inc. the U.K. subsidiary of the Houston based oil company has signed a major pioneering research contract to develop advanced internal/external coating systems for the pipeline industry. It will be the first research and development contract in Britain to arise from the new criteria for North Sea oil companies laid down by the Department of Energy in the 9th Licencing round.

Details

Anti-Corrosion Methods and Materials, vol. 32 no. 6
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 20 February 2023

Kaiyao Zhao, Minggao Tan, Xianfang Wu, Chen Shao and Houlin Liu

The purpose of the paper is to disclose the effect of the relative position (d) between the impeller and non-vane cavity on the hydraulic performance and unsteady characteristics…

Abstract

Purpose

The purpose of the paper is to disclose the effect of the relative position (d) between the impeller and non-vane cavity on the hydraulic performance and unsteady characteristics of vortex pump.

Design/methodology/approach

Three groups of vortex pump models with different impeller installation positions were analyzed and studied by combining experimental and CFD (Computational Fluid Dynamics) numerical calculations.

Findings

The steady numerical results show that as the width (d) of the impeller moves into the non-vane cavity increases, the proportion of circulation flow in the non-vane cavity is reduced and both the pump head and efficiency are on the rise. The unsteady numerical results and the Enstrophy analysis show that the dynamic and static interference between the circulation flow and the volute tongue is the main reason for the pressure pulsation with a frequency of 2fn in the vortex pump. With the increase of the d value, the dynamic and static interference between the circulation flow and the volute tongue is enhanced. The pulsation amplitude at the volute tongue of the d = 16.5 mm model increases about six times compared with the d = 0 mm model; the distribution of the vortex core in the non-vane cavity is closely related to the position of the impeller, and the peak of the Enstrophy of the circulation flow vortex belt always appears at the top of the impeller.

Originality/value

The research results provide a theoretical foundation for the optimization and improvement of the vortex pump.

Details

Engineering Computations, vol. 40 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Content available
Article
Publication date: 1 September 2001

39

Abstract

Details

Work Study, vol. 50 no. 5
Type: Research Article
ISSN: 0043-8022

Article
Publication date: 27 March 2023

Huanjun Li and Yimin Zhang

There are three purposes in this paper: to verify the importance of bi-directional fluid-structure interaction algorithm for centrifugal impeller designs; to study the…

Abstract

Purpose

There are three purposes in this paper: to verify the importance of bi-directional fluid-structure interaction algorithm for centrifugal impeller designs; to study the relationship between the flow inside the impeller and the vibration of the blade; study the influence of material properties on flow field and vibration of centrifugal blades.

Design/methodology/approach

First, a bi-directional fluid-structure coupling finite element numerical model of the supersonic semi-open centrifugal impeller is established based on the Workbench platform. Then, the calculation results of impeller polytropic efficiency and stage total pressure ratio are compared with the experimental results from the available literature. Finally, the flow field and vibrational characteristics of 17-4PH (PHB), aluminum alloy (AAL) and carbon fiber-reinforced plastic (CFP) blades are compared under different operating conditions.

Findings

The results show that the flow fields performance and blade vibration influence each other. The flow fields performance and vibration resistance of CFP blades are higher than those of 17-4PH (PHB) and aluminum alloy (AAL) blades. At the design speed, compared with the PHB blades and AAL blades, the CFP blades deformation is reduced by 34.5% and 9%, the stress is reduced by 69.6% and 20% and the impeller pressure ratio is increased by 0.8% and 0.14%, respectively.

Originality/value

The importance of fluid-structure interaction to the aerodynamic and structural design of centrifugal impeller is revealed, and the superiority over composite materials in the application of centrifugal impeller is verified.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 May 1988

The National Engineering Laboratory (NEL), based at East Kilbride, recently drew attention to the completion in 1988 of its first forty years in Scotland by producing an…

Abstract

The National Engineering Laboratory (NEL), based at East Kilbride, recently drew attention to the completion in 1988 of its first forty years in Scotland by producing an excellently written and illustrated 36‐page publication on the subject. An open day was held when visitors could better appreciate the present scope of NEL's research and development work and the dramatic headway made since the move from Teddington, Middlesex in 1948.

Details

Industrial Lubrication and Tribology, vol. 40 no. 5
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 4 September 2017

Chunlei Shao and Yang Zhao

The purpose of this paper is to study the dimensionless characteristics of a molten salt pump and propose an approach to carry out the modeling experiment by using water instead…

Abstract

Purpose

The purpose of this paper is to study the dimensionless characteristics of a molten salt pump and propose an approach to carry out the modeling experiment by using water instead of molten salts.

Design/methodology/approach

External characteristics of the pump were estimated by using the steady flow model and compared with the experimental results. By taking water as the working fluid, the pathlines in the volute of the model pump were validated by the results obtained of high-speed photography. According to the derived dimensionless characteristics of the molten salt pump, the modeling experimental schemes were proposed. Adopting the validated numerical simulation model, the performance of the molten salt pump was studied in detail.

Findings

The modeling experimental schemes designed according to the dimensionless characteristics are theoretically feasible. However, to carry out the experiment successfully, factors such as rotational speed, geometric size, flow rate and head should be taken into account. The flow in the pumps is similar under the similar operating condition and the external characteristics of the similar pump can be converted to each other. Compared with transporting water, the decline of the head and efficiency is within 5 per cent when the viscosity is lower than 0.01453 Pa · s. The pump is not suitable for running under the critical Reynolds number of 1.0 × 107.

Originality/value

The current work revealed the relationships among the dimensionless performances of a molten salt pump and proposed a critical Reynolds number ReQcr for the pump running.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 November 2021

Chunlei Shao, Ning Bao, Sheng Wang and Jianfeng Zhou

The purpose of this paper is to propose a prediction method of gas-liquid two-phase flow patterns and reveal the flow characteristics in the suction chamber of a centrifugal pump.

Abstract

Purpose

The purpose of this paper is to propose a prediction method of gas-liquid two-phase flow patterns and reveal the flow characteristics in the suction chamber of a centrifugal pump.

Design/methodology/approach

A transparent model pump was experimentally studied, and the gas-liquid two-phase flow in the pump was numerically simulated based on the Eulerian–Eulerian heterogeneous flow model. The numerical simulation method was verified from three aspects: the flow pattern in the suction chamber, the gas spiral length and the external characteristics of the pump. The two-phase flow in the suction chamber was studied in detail by using the numerical simulation method.

Findings

There are up to eight flow patterns in the suction chamber. However, at a certain rotational speed, only six flow patterns are observed at the most. At some rotational speeds, only four flow patterns appear. The gas spiral length has little relationship with the gas flow rate. It decreases with the increase of the liquid flow rate and increases with the increase of the rotational speed. The spiral flow greatly increases the turbulence intensity in the suction chamber.

Originality/value

A method for predicting the flow pattern was proposed. Eight flow patterns in the suction chamber were identified. The mechanism of gas-liquid two-phase flow in the suction chamber was revealed. The research results have reference values for the stable operation of two-phase flow pumps and the optimization of suction chambers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 February 2024

Md Atiqur Rahman

The research focused on analysing a unique type of heat exchanger that uses swirling air flow over heated tubes. This heat exchanger includes a round baffle plate with holes and…

Abstract

Purpose

The research focused on analysing a unique type of heat exchanger that uses swirling air flow over heated tubes. This heat exchanger includes a round baffle plate with holes and opposite-oriented trapezoidal air deflectors attached at different angles. The deflectors are spaced at various distances, and the tubes are arranged in a circular pattern while maintaining a constant heat flux.

Design/methodology/approach

This setup is housed inside a circular duct with airflow in the longitudinal direction. The study examined the impact of different inclination angles and pitch ratios on the performance of the heat exchanger within a specific range of Reynolds numbers.

Findings

The findings revealed that the angle of inclination significantly affected the flow velocity, with higher angles resulting in increased velocity. The heat transfer performance was best at lower inclination angles and pitch ratios. Flow resistance decreased with increasing angle of inclination and pitch ratio.

Originality/value

The average thermal enhancement factor decreased with higher inclination angles, with the maximum value observed as 0.94 at a pitch ratio of 1 at an angle of 30°.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

21 – 30 of 194