Search results

1 – 10 of 49
Article
Publication date: 26 January 2023

Demet Canpolat Tosun and Yasemin Işık

It is possible with classical path planning algorithms to plan a path in a static environment if the instant position of the vehicle is known and the target and obstacle positions…

Abstract

Purpose

It is possible with classical path planning algorithms to plan a path in a static environment if the instant position of the vehicle is known and the target and obstacle positions are constant. In a dynamic case, these methods used for the static environment are insufficient. The purpose of this study is to find a new method that can provide a solution to the four-rotor unmanned aerial vehicle (UAV) path planning problem in static and dynamic environments.

Design/methodology/approach

As a solution to the problem within the scope of this study, there is a new hybrid method in which the global A* algorithm and local the VFH+ algorithm are combined.

Findings

The performance of the designed algorithm was tested in different environments using the Gazebo model of a real quadrotor and the robot operating system (ROS), which is the widely used platform for robotic applications. Navigation stacks developed for mobile robots on the ROS platform were also used for the UAV, and performance benchmarks were carried out. From the proposed hybrid algorithm, remarkable results were obtained in terms of both planning and implementation time compared to ROS navigation stacks.

Originality/value

This study proposes a new hybrid approach to the path planning problem for UAVs operating in both static and dynamic environments.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 21 August 2023

Tomasz Rogalski, Paweł Rzucidło, Stanisław Noga and Dariusz Nowak

This study presents an image processing algorithm capable of calculating selected flight parameters requested by flight control systems to guide aircraft along the horizontal…

Abstract

Purpose

This study presents an image processing algorithm capable of calculating selected flight parameters requested by flight control systems to guide aircraft along the horizontal projection of the landing trajectory. The parameters identified based on the basics of the image of the Calvert light system appearing in the on-board video system are used by flight control algorithms that imitate the pilot’s schematics of control. Controls were generated using a fuzzy logic expert system. This study aims to analyse an alternative to classical solutions that can be applied to some specific cases.

Design/methodology/approach

The paper uses theoretical discussions and breakdowns to create the basics for the development of structures for both image processing algorithms and control algorithms. An analytical discussion on the first stage was transformed into laboratory rig tests using a real autopilot unit. The results of this research were verified in a series of software-in-the-loop computer simulations.

Findings

The image processing method extracts the most crucial parameters defining the relative position of the aircraft to the runway, as well as the control algorithm that uses it.

Practical implications

In flight control systems that do not use any dedicated ground or satellite infrastructure to land the aircraft.

Originality/value

This paper presents the original approach of the author to aircraft control in cases where visual signals are used to determine the flight trajectory of the aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 2 May 2023

Miroslav Šplíchal, Miroslav Červenka and Jaroslav Juracka

This study aims to focus on verifying the possibility of monitoring the condition of a turboprop engine using data recorded by on-board avionics Garmin G1000. This approach has…

Abstract

Purpose

This study aims to focus on verifying the possibility of monitoring the condition of a turboprop engine using data recorded by on-board avionics Garmin G1000. This approach has potential benefits for operators without the need to invest in specialised equipment. The main focus was on the inter-turbine temperature (ITT). An unexpected increase in temperature above the usual value may indicate an issue with the engine. The problem lies in the detection of small deviations when the absolute value of the ITT is affected by several external variables.

Design/methodology/approach

The ITT is monitored by engine sensors and stored by avionics 1× per second onto an SD card. This process generates large amount of data that needs to be processed. Therefore, an algorithm was created to detect the steady states of the engine parameters. The ITT value also depends on the flight parameters and surrounding environment. As a solution to these effects, the division of data into clusters that represent the usual flight profiles was tested. This ensures a comparison at comparable ambient pressures. The dominant environmental influence then remain at the ambient air temperature (OAT). Three OAT compensation methods were tested in this study. Compensation for the standard atmosphere, compensation for the standard temperature of the given flight level and compensation for the speed of the generator, where the regression analysis proved the dependence between the ambient temperature and the speed of the generator.

Findings

The influence of ambient temperature on the corrected ITT values is noticeable. The best method for correcting the OAT appears to be the use of compensation through the revolutions of the compressor turbine NG. The speed of the generator depends on several parameters, and can refine the corrected ITT value. During the long-term follow-up, the ITT differences (delta values) were within the expected range. The tested data did not include the behaviour of the engine with a malfunction or other damage that would clearly verify this approach. Therefore, the engine monitoring will continue.

Practical implications

This study presents a possible approach to turbine engine condition monitoring using limited on board avionic data. These findings can support the development of an engine condition monitoring system with automatic abnormality detection and low operating costs.

Originality/value

This article represent a practical description of problems in monitoring the condition of a turboprop engine in an aircraft with variable flight profiles. The authors are not aware of a similar method that uses monitoring of engine parameters at defined flight levels. Described findings should limit the influence of ambient air pressure on engine parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 April 2023

Ibrahim Ayaz, Ufuk Sakarya and Ibrahim Hokelek

The purpose of this paper is to present a verification methodology for custom micro coded components designed for Avionics projects. Every electronic hardware which will be…

Abstract

Purpose

The purpose of this paper is to present a verification methodology for custom micro coded components designed for Avionics projects. Every electronic hardware which will be developed for an aircraft must be designed with the compliance of DO-254 processes. Requirements are the key elements of the aviation. All the requirements must be covered by the design to be considered as completed. Therefore, verification of the custom micro coded components against requirements should be comprehensively addressed. The verification using the manual testing approach is less preferable, as humans can possibly make mistakes. Therefore, the most used verification method today is the automated simulation.

Design/methodology/approach

The industry has developed a common methodology for generating automated testbenches by following the standardized guideline. This methodology is named as the universal verification methodology (UVM). In this paper, the verification study of ARINC-429 data bus digital design is presented to describe the DO-254 verification process using the UVM.

Findings

The results are supported with functional coverage and code coverage in addition to the assertions. It is observed that the design worked correctly.

Originality/value

To the best of the authors’ knowledge, this is the first study comprehensively describing the DO-254 verification process and demonstrating it by the UVM application of ARINC-429 on programmable logic devices.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Case study
Publication date: 5 April 2024

Susan V. White and Karen Hallows

This case was researched using publicly available sources, including Mercury Systems financial filings and press releases, news stories about the seasoned equity offering…

Abstract

Research methodology

This case was researched using publicly available sources, including Mercury Systems financial filings and press releases, news stories about the seasoned equity offering, financial information from Bloomberg and industry information from IBISWorld Industry Reports and articles related to seasoned/secondary equity offerings, intangible asset valuation and the use of revolving lines of credit. Quotes are taken from Mercury financial reports and press releases and express the (optimistic) opinions of company executives.

Case overview/synopsis

Mercury Systems, a technology company in the aerospace and defense industry, announced a six million share seasoned stock offering in June 2019. This resulted in a 6% stock price decrease. A stock price decrease is a typical event when a firm announces the issuance of new common shares, but with Mercury Systems, there were concerns about how much money the firm needed to fund its strategy of growth through acquisitions. If internally generated funds were not sufficient, should the firm issue debt or have another seasoned equity issue? Students will look at the objectives and success of the most recent seasoned equity issue, determine future funds needs and how the firm should finance these needs.

Complexity academic level

This case is appropriate for undergraduate and graduate students in corporate finance electives. Typically, topics such as seasoned equity offerings are not covered in introductory courses, so this is recommended for finance electives. Even in advanced finance courses, sometimes there is insufficient time to cover seasoned equity offerings.

Details

The CASE Journal, vol. ahead-of-print no. ahead-of-print
Type: Case Study
ISSN: 1544-9106

Keywords

Article
Publication date: 18 December 2023

Hamdi Ercan, Cüneyt Öztürk and Mustafa Akın

This paper aims to assess the impact of electrifying the environmental control system (ECS) and ice protection system (IPS), the primary pneumatic system consumers in a…

Abstract

Purpose

This paper aims to assess the impact of electrifying the environmental control system (ECS) and ice protection system (IPS), the primary pneumatic system consumers in a conventional commercial transport aircraft, on aircraft weight, range, and fuel consumption.

Design/methodology/approach

The case study was carried out on Airbus A321-200 aircraft. Design, modelling and analysis processes were carried out on Pacelab SysArc software. Conventional and electrical ECS and IPS architectures were modelled and analysed considering different temperature profiles.

Findings

The simulation results have shown that the aircraft model with ±270 VDC ECS and IPS architecture is lighter, has a more extended range and has less relative fuel consumption. In addition, the simulation results showed that the maximum range and relative fuel economy of all three aircraft models increased slightly as the temperature increased.

Practical implications

Considering the findings in this paper, it is seen that the electrification of the conventional pneumatic system in aircraft has positive contributions in terms of weight, power consumption and fuel consumption.

Social implications

The positive contributions in terms of weight, power consumption and fuel consumption in aircraft will be direct environmental and economic contributions.

Originality/value

Apart from the conventional ECS and IPS of the aircraft, two electrical architectures, 230 VAC and ±270 VDC, were modelled and analysed. To see the effects of the three models created in different temperature profiles, analyses were done for cold day, ISA standard day and hot day temperature profiles.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 9 June 2023

Hamdi Ercan and Hamdi Ulucan

The Global Positioning System (GPS) is crucial for determining the positions of quadrotors, enabling safe flight and maintaining stability against environmental conditions. This…

Abstract

Purpose

The Global Positioning System (GPS) is crucial for determining the positions of quadrotors, enabling safe flight and maintaining stability against environmental conditions. This study aims to investigate the effect of wind on the GPS of quadrotors experimentally.

Design/methodology/approach

This experimental study was conducted using an F450 frame, 980 kV motors and a Pixhawk flight controller to manage the quadrotor’s flight. To investigate the effects of wind on the quadrotor’s GPS during flight, a Pixhawk 4 Holybro flight controller was used. The experimental tests were performed on a predetermined route at different wind speeds.

Findings

Analysis of the data obtained from the flight tests showed that GPS signals were more affected as the wind speed increased. The percentage of GPS jamming levels reached 18% at high wind speeds.

Practical implications

Positioning services will be even more critical for quadrotors, which are expected to be used more frequently in public areas. This study is expected to be a reference for GPS-related research.

Originality/value

Winds pose a significant threat to the safe flight of quadrotors in many ways. This study experimentally investigates the effects of wind on the GPSs of quadrotors and to what extent it affects them at different wind speeds under real weather conditions. The obtained data shows that wind has a significant impact on GPS jamming.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 11 April 2023

Grzegorz Kopecki and Michal Banicki

Attitude and heading are very important measurements on board aircraft. In modern solutions they are measured by the attitude and heading reference system (AHRS). In some small…

47

Abstract

Purpose

Attitude and heading are very important measurements on board aircraft. In modern solutions they are measured by the attitude and heading reference system (AHRS). In some small unmanned systems, the GPS track angle is used for heading corrections instead of the magnetometer; then, the system measures the track angle instead of heading. With a temporary lack of correction signals, the measurement error increases very quickly. Similarly, a quick increase in the measurement error is observed when a magnetic heading sensor used for correction stops working properly. This study aims to propose measurement of the roll angle for yaw angle correction.

Design/methodology/approach

AHRS algorithms were designed; typical maneuvers were analyzed. The method was verified by simulation and in flight testing analysis. For quantitative analyses, a performance index was proposed.

Findings

The method enables reduction of the yaw angle error caused by the gyros bias error. This study presents the idea, results of simulations and flight testing data analysis and discusses advantages and limitations of the presented method.

Practical implications

The presented methodology can be implemented in AHRS systems for manned and unmanned aircraft.

Originality/value

This study enables more accurate measurement of the yaw angle in the case of missing correction signals.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 April 2024

Erol Can and Ugur Kilic

Static inverters are very important for the emergency energy distribution system of aircraft and similar machines. At the same time, the electrical energy produced at high…

Abstract

Purpose

Static inverters are very important for the emergency energy distribution system of aircraft and similar machines. At the same time, the electrical energy produced at high frequency for electrical devices is used to reduce the weight of the cables in the aircraft and spacecraft because of the skin effect. In the high-frequency system, a thinner cable cross-section is used, and a great weight reduction occurs in the aircraft. So, fuel economy, less and late wear of the materials (landing gear, etc.) can be obtained with decreasing weight. This paper aims to present the development of a functional multilevel inverter (FMLI) with fractional sinus pulse width modulation (FSPWM) and a reduced number of switches to provide high-frequency and quality electrical energy conversion.

Design/methodology/approach

After the production of FSPWM for FMLI with a reduced component, which, to the best of the authors’ knowledge, is presented for the first time in this study, is explained step by step, and eight operating states are given according to different FSPWMs operating the circuit. The designed inverter and modulation technique are compared by testing the conventional modular multilevel inverter on different loads.

Findings

According to application results, it is seen that there is a 50% reduction in cross-section from 100 Hz to 400 Hz with the skin effect. At 1000 Hz, there is a 90% cross-section reduction. The decrease can be in cable weights that may occur in aircraft from 10 kg to 100 kg according to different frequencies. It causes less harmonic distortion than conventional converters. This supports the safer operation of the system. Compared to the traditional system, the proposed system provides more amplitude in converting the source to alternating voltage and increases the efficiency.

Practical implications

FSPWM is developed for multilevel inverters with reduced components at the high frequency and cascaded switching studies in the power electronics of aircraft.

Social implications

Although the proposed system has less current and power loss as mentioned in the previous sections, it contains fewer power elements than conventional inverters that are equivalent for different hardware levels. This not only reduces the cost of the system but also provides ease of maintenance. To reduce the cable load in aircraft and create more efficient working conditions, 400 Hz alternative voltage is used. The proposed system causes less losses and lower harmonic distortions than traditional systems. This will reduce possible malfunctions and contribute to aircraft reliability for passengers and cargo. As technology develops, it is revealed that the proposed inverter system will be more efficient than traditional inverters when devices operating at frequencies higher than 400 Hz are used. With the proposed inverter, safer operation will be ensured, while there will be less energy loss, less fuel consumption and less carbon emissions to the environment.

Originality/value

The proposed inverter structure shows that it can provide energy transmission for electrical devices in space and aircraft by using the skin effect. It also contains less power elements than the traditional inverters, which are equivalent for different levels of hardware.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 January 2024

Albert Zajdel, Michal Welcer and Cezary Jerzy Szczepanski

This paper aims to present assessment of models and simulation results used in the development process of flight stabilisation system that uses trim tabs for PZL-130 Orlik…

Abstract

Purpose

This paper aims to present assessment of models and simulation results used in the development process of flight stabilisation system that uses trim tabs for PZL-130 Orlik turboprop military trainer aircraft. Flight test of the system allowed to compare software and hardware simulation results with real flight recordings.

Design/methodology/approach

Proposed flight stabilisation system was developed using modern techniques of model-based design, automatic code generation, software and hardware in the loop testing. The project reached flight testing stage which allowed to gather data to verify models and simulation results and asses their quality.

Findings

Results of the comparison showed that the trim tab actuator model used in simulation can be improved by adding play. This reduced the difference between simulation and real flight system output – actuator angle. The influence of airloads on the flying actuator angle compared to hardware in the loop simulation in lab is less than ± 0.6°.

Originality/value

Proposed flight stabilisation system that uses trim tabs has several benefits over classic automatic flight system in terms of weight, energy consumption and structure simplicity and does not need aircraft primary control modification. It was developed using modern techniques of model-based design, automatic code generation and hardware in the loop simulations.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 49