Books and journals Case studies Expert Briefings Open Access
Advanced search

Search results

1 – 10 of over 2000
To view the access options for this content please click here
Article
Publication date: 23 September 2019

Optimization of machining parameters for abrasive water jet drilling of carbon fiber-reinforced polymer composite material using Taguchi method

Meltem Altin Karatas, Hasan Gokkaya and Muammer Nalbant

The aim of this paper is to optimize the machining parameters to obtain the smallest average surface roughness values during drilling of the carbon fiber-reinforced…

HTML
PDF (2.1 MB)

Abstract

Purpose

The aim of this paper is to optimize the machining parameters to obtain the smallest average surface roughness values during drilling of the carbon fiber-reinforced polymer (CFRP) composite material with abrasive water jet (AWJ) and analyze the damage of the delamination.

Design/methodology/approach

CFRP composite material had been fabricated having fiber orientations frequently used in the aerospace industry (0°/45°/90°/−45°). Three different stand-off distances (1, 2 and 3 mm), three different water pressures (1,800, 2,800 and 3,800 bar) and three different hole diameters (4, 8 and 12 mm) were selected as processing parameters. The average surface roughness values were obtained, and delamination damage was then analyzed using Taguchi optimization. Drilling experiments were performed using the Taguchi L27 orthogonal array via Minitab 17 software. The signal/noise ratio was taken into account in the evaluation of the test results. Using the Taguchi method, the control factors giving the mean surface roughness values were determined. Analysis of variance was performed using the experimental results, and the effect levels of the control factors on the average surface roughness were found.

Findings

It was found that water pressure and hole diameter had a higher effect on average surface roughness, while water pressure and stand-off distance were effective on delamination.

Practical implications

Owing to their excellent thermal and mechanical properties, the CFRP composite materials show greater potential for their applications in aircraft and aerospace industry.

Originality/value

The novel approach is to reduce cost and spent time using Taguchi optimization as a result of AWJ drilling the material in this fiber orientation ([0°/45°/90°/−45°]s, which is often used in the aerospace industry).

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 2
Type: Research Article
DOI: https://doi.org/10.1108/AEAT-11-2018-0282
ISSN: 1748-8842

Keywords

  • Carbon fiber-reinforced polymer composite material
  • Average surface roughness
  • Delamination
  • Taguchi optimization

To view the access options for this content please click here
Article
Publication date: 1 March 2008

The Development of Surface Roughness Model When Turning Hardened Steel with Ceramic Cutting Tool Using Response Methodology

Yusuf Sahin and A. Riza Motorcu

This paper presents a study of the development of surface roughness model when turning the mild steel hardened up to 484 HV with mixed alumina ceramic (KY1615) and coated…

HTML
PDF (138 KB)

Abstract

This paper presents a study of the development of surface roughness model when turning the mild steel hardened up to 484 HV with mixed alumina ceramic (KY1615) and coated alumina ceramic cutting tools (KY4400). The model was developed in terms of main cutting parameters such as cutting speed, feed rate and depth of cut, using response surface methodology. The established equation indicated that the feed rate affected the surface roughness the most, but other parametres remined stable for arithmetic average height parametre (Ra). However, it decreased with increasing the cutting speed, and with the starting and finishing point of cut for ten point height parametre (Rz). The cutting speed and the depth of cut had a slight effect on surface roughness values of Ra, Rz when using KY4400 cutting tools. Furthermore, the average surface roughness value of Ra was about 0.926 um, 1.089 um for KY1615, KY4400 cutting tools, respectively. The predicted surface roughness was found to be very close to experimentally observed ones at 95% confidence level. Moreover, analysis of variance indicated that squares terms were significant but interaction terms were insignificant for both cutting tools.

Details

Multidiscipline Modeling in Materials and Structures, vol. 4 no. 3
Type: Research Article
DOI: https://doi.org/10.1163/157361108784890697
ISSN: 1573-6105

Keywords

  • Turning ceramic tools
  • Surface roughness
  • Response surface methodology
  • Prediction
  • Analysis of variance

To view the access options for this content please click here
Article
Publication date: 14 June 2013

Effect of surface roughness on pure squeeze EHL motion of circular contacts

Li‐Ming Chu, Hsiang‐Chen Hsu, Jaw‐Ren Lin and Yuh‐Ping Chang

The purpose of this paper is to explore the pure squeeze elastohydrodynamic lubrication motion of circular contacts with surface roughness under constant load conditions…

HTML
PDF (164 KB)

Abstract

Purpose

The purpose of this paper is to explore the pure squeeze elastohydrodynamic lubrication motion of circular contacts with surface roughness under constant load conditions. The proposed model can reasonably calculate the effects of surface roughness on the transient pressure profiles, film shapes, and normal squeeze velocities during the pure squeeze process.

Design/methodology/approach

Based on Christensen's stochastic theory, the transient modified Reynolds equation is derived in polar coordinates to consider the effects of surface roughness. The finite difference method and the Gauss‐Seidel iteration method are used to solve the transient modified Reynolds equation, the elasticity deformation equation, load balance equation, and lubricant rheology equations simultaneously.

Findings

The simulation results reveal that the circular type roughness possesses storage oil capacity. Comparatively, the radial type roughness possesses leak oil capacity. Therefore, the film thickness is found with circular type roughness, followed by smooth, and then radial type roughness. In additional, the central dimensionless pressure is found with radial type roughness, followed by smooth, and then circular type roughness.

Originality/value

A numerical method for general applications with surface roughness was developed to investigate the pure squeeze action in an isothermal EHL spherical conjunction under constant load conditions, but without asperities contact.

Details

Industrial Lubrication and Tribology, vol. 65 no. 4
Type: Research Article
DOI: https://doi.org/10.1108/00368791311331239
ISSN: 0036-8792

Keywords

  • Squeeze film
  • Surface roughness
  • EHL
  • Simulation
  • Loading (physics)

To view the access options for this content please click here
Article
Publication date: 18 April 2016

Effect of processing parameters of electron beam melting machine on properties of Ti-6Al-4V parts

Dana H. Abdeen and Bruce R. Palmer

This paper aims to study the effect of processing parameters of an electron beam melting (EBM) machine on the surface roughness, critical pitting temperature and density…

HTML
PDF (3.2 MB)

Abstract

Purpose

This paper aims to study the effect of processing parameters of an electron beam melting (EBM) machine on the surface roughness, critical pitting temperature and density of Ti-6Al-4V parts produced from the EBM machine.

Design/methodology/approach

In this study, statistically designed experiments were used to manufacture Ti-6Al-4V samples in the EBM machine under different process parameters of beam current, beam speed and offset focus. Surface roughness was measured for as-built samples using a 3D profilometer. Then, a potentiostatic test was conducted under 2.40 V vs saturated calomel electrode to determine the critical pitting temperature (CPT) in 3.5 per cent mass NaCl solution for the samples of different processing parameters. Next, density was measured for these samples. Finally, model equations were established to relate EBM’s process parameters to measured properties of surface roughness, CPT and density.

Findings

Results showed that offset focus had the main influence on surface roughness more than the beam current and the beam speed. Changing processing parameters did not affect corrosion behavior of EBM Ti-6Al-4V as CPT did not vary widely, although a slight effect on CPT values obtained from the beam current and the beam speed. Density was greatly affected by the offset focus more than the other parameters. It can be concluded that uniform and precise measurements of roughness and density are not achievable through this machine; only a range of these properties can be attained.

Originality/value

EBM machine produces 3D parts in a layer-based building process under high temperature and vacuum atmosphere. Due to the manufacturing technique and conditions, the resulting object has irregularities on the exterior surface and voids that are formed within the part, both of which affect samples’ properties like surface roughness, CPT and density. This study established model equations that can relate parts’ properties to processing parameters so that parts of specific properties are obtained to fit the application they are used for. For each property, ANOVA fits vs linear energy were also obtained.

Details

Rapid Prototyping Journal, vol. 22 no. 3
Type: Research Article
DOI: https://doi.org/10.1108/RPJ-09-2014-0105
ISSN: 1355-2546

Keywords

  • Process parameters
  • Surface roughness
  • Density
  • Electron beam melting
  • Critical pitting temperature
  • Ti-6Al-4V

To view the access options for this content please click here
Article
Publication date: 4 December 2019

Understanding surface roughness of additively manufactured nickel superalloy for space applications

Travis Edward Shelton, Dylan Joseph Stelzer, Carl R. Hartsfield, Gregory Richard Cobb, Ryan P. O'Hara and Christopher D. Tommila

For many applications, including space applications, the usability and performance of a component is dependent on the surface topology of the additively manufactured part…

HTML
PDF (1.7 MB)

Abstract

Purpose

For many applications, including space applications, the usability and performance of a component is dependent on the surface topology of the additively manufactured part. The purpose of this paper is to present an investigation into minimizing the residual surface roughness of direct metal laser sintering (DMLS) samples by manipulating the input process parameters.

Design/methodology/approach

First, the ability to manipulate surface roughness by modifying processing parameters was explored. Next, the surface topography was characterized to quantify roughness. Finally, microthruster nozzles were created both additively and conventionally for flow testing and comparison.

Findings

Surface roughness of DMLS samples was found to be highly dependent on the laser power and scan speed. Because of unintended partially sintered particles adhering to the surface, a localized laser fluence mechanism was explored. Experimental results show that surface roughness is influenced by the varied parameters but is not a completely fluence driven process; therefore, a relationship between laser fluence and surface roughness can be incorporated but not completely assumed.

Originality/value

This paper serves as an aid in understanding the importance of surface roughness and the mechanisms associated with DMLS. Rather than exploring a more common global energy density, a localized laser fluence was initiated. Moreover, the methodology and conclusions can be used when optimizing parts via metal additive manufacturing.

Details

Rapid Prototyping Journal, vol. 26 no. 3
Type: Research Article
DOI: https://doi.org/10.1108/RPJ-02-2019-0049
ISSN: 1355-2546

Keywords

  • Surface roughness
  • Additive manufacturing
  • Direct metal laser sintering
  • Laser fluence
  • Microthruster nozzles
  • Nickel alloys

To view the access options for this content please click here
Article
Publication date: 14 September 2015

The change of work roll surface topography during skin pass rolling of steel sheets

Marek Burdek

This paper aims to analyze changes in the surface topography of the work rolls during skin passing. Cold rolled steel sheets are additionally subject to skin pass rolling…

HTML
PDF (368 KB)

Abstract

Purpose

This paper aims to analyze changes in the surface topography of the work rolls during skin passing. Cold rolled steel sheets are additionally subject to skin pass rolling to form an appropriate surface topography. This operation should facilitate the process of further metal forming of steel sheets, such as deep drawing, painting, etc. The surface topography of steel sheets is determined by the surface topography of the work rolls as well as the skin pass rolling parameters (rolling speed, elongation, roll force, etc.). Suitable preparation and selection of roll surface topography influences the degree of rolls wear and the surface topography of steel sheets as well.

Design/methodology/approach

Two-dimensional (2D) and three-dimensional (3D) roughness measurements of work roll surface before, during and after finishing of skin pass rolling of steel sheets are presented in the paper. The measurements were performed on four sets of work rolls with different surface topography.

Findings

The appearance of the surface of rolls obtained from the analysis of 3D roughness, the values of selected parameters of the 3D roughness and relative changes of the roughness parameter Ra/Sa depending on the length of the skin passed steel sheets are presented.

Practical implications

The wear of rolls is different depending on work surface topography.

Originality/value

The aim of this paper is to analyze changes in the surface topography of the work rolls during skin passing. It was expected that the surface of work rolls with more summits at similar average roughness Ra will change much faster than the surface with fewer summits. For this purpose, preliminary tests were performed in an industrial environment on four pairs of work rolls, including two pairs of rolls that were hard chromium-plated.

Details

Industrial Lubrication and Tribology, vol. 67 no. 6
Type: Research Article
DOI: https://doi.org/10.1108/ILT-02-2015-0019
ISSN: 0036-8792

Keywords

  • Surface roughness
  • Machine tools
  • Steels

To view the access options for this content please click here
Article
Publication date: 9 March 2010

EHL of circular contacts lubricating with mixture of two lubricants

Li‐Ming Chu, Wang‐Long Li, Yuh‐Ping Chang and Hsiang‐Chen Hsu

The purpose of this paper is to analyze and discuss the coupled effects of surface roughness and flow rheology for a homogeneous mixture of Newtonian base oil and power…

HTML
PDF (294 KB)

Abstract

Purpose

The purpose of this paper is to analyze and discuss the coupled effects of surface roughness and flow rheology for a homogeneous mixture of Newtonian base oil and power law fluids on the performance of elastohydrodynamic lubrication (EHL) circular contact problems.

Design/methodology/approach

The average flow model is adapted for the interaction of the flow rheology of lubricant and surface roughness. The average Reynolds type equation (ARTE) and the related flow factors (which describes the coupled effects of surface roughness and flow rheology of a mixture), the viscosity‐pressure and density‐pressure relations equations, the elastic deformation equation, and the force balance equation are then solved simultaneously. The multilevel multi‐integration algorithm and Gauss‐Seidel iteration method are utilized to calculate the film thickness and pressure distributions of the EHL circular contact problems effectively.

Findings

The effects of volume fraction, flow index of power law fluid, and surface roughness parameters (Peklenik number, standard deviation of composite surface roughness) on the film thickness and pressure distributions are discussed. The results show that the effects of surface roughness should be considered especially in EHL contact problems.

Originality/value

The EHL of circular contacts lubricating with mixture of two lubricants is first analyzed. The coupling effects of surface roughness and flow rheology of mixture (a Newtonian fluid and a power‐law fluid) on the EHL performance are first discussed in this paper.

Details

Industrial Lubrication and Tribology, vol. 62 no. 2
Type: Research Article
DOI: https://doi.org/10.1108/00368791011025629
ISSN: 0036-8792

Keywords

  • Surface‐roughness measurement
  • Lubricants
  • Flow
  • Modelling
  • Elastic properties (fluids)
  • Rheology

To view the access options for this content please click here
Article
Publication date: 8 May 2018

Surface roughness effects on point contact elastohydrodynamic lubrication in linear rolling guide with fractal surface topographies

Linlin Li and Jiajun Yang

The purpose of this paper is to study the effects of surface roughness on the lubrication performances of the linear rolling guide, which provides theoretical guidance for…

HTML
PDF (2.1 MB)

Abstract

Purpose

The purpose of this paper is to study the effects of surface roughness on the lubrication performances of the linear rolling guide, which provides theoretical guidance for its lubrication design.

Design/methodology/approach

The two-variable Weierstrass–Mandelbrot function is used to represent the random and multi-scale characteristics of the rough surface topography. The elastohydrodynamic lubrication (EHL) model of contact between the steel ball and raceway is built. The full numerical solutions of the pressure and film thickness are obtained by using the multi-grid technique.

Findings

The presence of surface roughness can cause the random fluctuations of the pressure and film thickness, and the fluctuations can become more dramatic for the rougher surfaces. It is also found that the film characteristics can be influenced significantly by the working conditions, such as the load, velocity and ambient viscosity of lubricants.

Originality/value

Characterization of surface topographies regarding EHL problems in the past studies cannot reflect random and multi-scale characteristics. In this paper, the fractal-based method is introduced to analysis of the point-contact micro-EHL. It reveals the mechanism and law of contact lubrication influenced by the fractal surface roughness and enriches the lubrication principle and method of the linear rolling guide.

Details

Industrial Lubrication and Tribology, vol. 70 no. 4
Type: Research Article
DOI: https://doi.org/10.1108/ILT-04-2017-0092
ISSN: 0036-8792

Keywords

  • Surface roughness
  • Point contact
  • Elastohydrodynamic lubrication
  • Fractal geometry
  • Linear rolling guide

To view the access options for this content please click here
Article
Publication date: 19 January 2015

Machine vision method for non-contact measurement of surface roughness of a rotating workpiece

B. M. Kumar and M. M. Ratnam

– This paper aims to propose a non-contact method using machine vision for measuring the surface roughness of a rotating workpiece at speeds of up to 4,000 rpm.

HTML
PDF (1.5 MB)

Abstract

Purpose

This paper aims to propose a non-contact method using machine vision for measuring the surface roughness of a rotating workpiece at speeds of up to 4,000 rpm.

Design/methodology/approach

A commercial digital single-lens-reflex camera with high shutter speed and backlight was used to capture a silhouette of the rotating workpiece profile. The roughness profile was extracted at sub-pixel accuracy from the captured images using the moment invariant method of edge detection. The average (Ra), root-mean square (Rq) and peak-to-valley (Rt) roughness parameters were measured for ten different specimens at spindle speeds of up to 4,000 rpm. The roughness values measured using the proposed machine vision system were verified using the stylus profilometer.

Findings

The roughness values measured using the proposed method show high correlation (up to 0.997 for Ra) with those determined using the profilometer. The mean differences in Ra, Rq and Rt between the two methods were only 4.66, 3.29 and 3.70 per cent, respectively.

Practical implications

The proposed method has significant potential for application in the in-process roughness measurement and tool condition monitoring from workpiece profile signature during turning, thus, obviating the need to stop the machine.

Originality/value

The machine vision method combined with sub-pixel edge detection has not been applied to measure the roughness of a rotating workpiece.

Details

Sensor Review, vol. 35 no. 1
Type: Research Article
DOI: https://doi.org/10.1108/SR-01-2014-609
ISSN: 0260-2288

Keywords

  • Machine vision
  • Surface roughness
  • On-machine measurement

To view the access options for this content please click here
Article
Publication date: 6 January 2020

Experimental study on leveling mechanism for material-jetting-type color 3D printing

Yih-Lin Cheng, Chih-Hsuan Chang and Chunliang Kuo

The material-jetting-type (MJ) 3-D printing technology has advantages in resolution and color printing. During the printing process, a leveling technique is needed to…

HTML
PDF (2.2 MB)

Abstract

Purpose

The material-jetting-type (MJ) 3-D printing technology has advantages in resolution and color printing. During the printing process, a leveling technique is needed to precisely control the thickness and flatness of each layer. Roller-type leveling mechanism has been adopted in commercial MJ 3-D printers, but it is lack of research on roller leveling process parameters and establishing experimental procedures. Therefore, in this study, a roller-type leveling mechanism for a MJ color 3 D printer was developed, and experimental approaches were utilized to determine process parameters.

Design/methodology/approach

The roller-type leveling mechanism was chosen to provide functions of flattening and removal of excess material. The parameters studied were roller speed and rotational direction. Surface roughness, Ra, of printed single-layered specimens was measured at 15 locations for plane roughness and along five lines for line roughness to evaluate the leveling results. Adopting suitable parameters, color samples with and without leveling were printed for comparison and verification.

Findings

According to plane roughness results, forward rotation achieved better leveling. Plane roughness was the major criteria to determine roller speed with the assistance of standard deviation of line roughness. The best parameters of the self-developed MJ color 3-D printer were found to be rolling forward at 1,100 rpm. In addition, printed color samples showed great improvement in surface roughness with leveling and no obvious color mixing after leveling.

Research limitations/implications

Leveling is important to achieve desired layer thickness, smooth surface and good color quality in color 3-D printing. For MJ 3-D printing, only patents were revealed regarding roller design, but paper publications have not been presented. This research practically proposed to use experimental approach to understand the effects of roller operating parameters and to find the suitable ones based on surface roughness results.

Practical implications

This research established the experimental procedures and also suggested guidelines of experimentally obtaining suitable roller leveling process parameters. Developers can refer to this study results to design and adjust leveling mechanism in a new MJ 3-D printer.

Originality/value

The experimental approach can be applied to similar MJ 3-D printing systems if different materials are introduced or the platform speed is changed. The observed trends suggested several guidelines to plan limited experiments only to obtain suitable roller process parameters.

Details

Rapid Prototyping Journal, vol. 26 no. 1
Type: Research Article
DOI: https://doi.org/10.1108/RPJ-09-2018-0227
ISSN: 1355-2546

Keywords

  • Surface roughness
  • 3D printing
  • Material jetting
  • Roller leveling

Access
Only content I have access to
Only Open Access
Year
  • Last week (4)
  • Last month (11)
  • Last 3 months (41)
  • Last 6 months (83)
  • Last 12 months (191)
  • All dates (2095)
Content type
  • Article (2010)
  • Earlycite article (73)
  • Book part (12)
1 – 10 of over 2000
Emerald Publishing
  • Opens in new window
  • Opens in new window
  • Opens in new window
  • Opens in new window
© 2021 Emerald Publishing Limited

Services

  • Authors Opens in new window
  • Editors Opens in new window
  • Librarians Opens in new window
  • Researchers Opens in new window
  • Reviewers Opens in new window

About

  • About Emerald Opens in new window
  • Working for Emerald Opens in new window
  • Contact us Opens in new window
  • Publication sitemap

Policies and information

  • Privacy notice
  • Site policies
  • Modern Slavery Act Opens in new window
  • Chair of Trustees governance statement Opens in new window
  • COVID-19 policy Opens in new window
Manage cookies

We’re listening — tell us what you think

  • Something didn’t work…

    Report bugs here

  • All feedback is valuable

    Please share your general feedback

  • Member of Emerald Engage?

    You can join in the discussion by joining the community or logging in here.
    You can also find out more about Emerald Engage.

Join us on our journey

  • Platform update page

    Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

  • Questions & More Information

    Answers to the most commonly asked questions here