Search results

1 – 10 of 114
Article
Publication date: 7 February 2024

Paul O. Ukachi, Mathias Ekpu, Sunday C. Ikpeseni and Samuel O. Sada

The purpose of this study is to assess the performance of fuel blends containing ethanol and gasoline in spark ignition engines. The aim is to explore alternative fuels that can…

Abstract

Purpose

The purpose of this study is to assess the performance of fuel blends containing ethanol and gasoline in spark ignition engines. The aim is to explore alternative fuels that can enhance performance while minimizing or eliminating adverse environmental impacts, particularly in the context of limited fossil fuel availability and the need for sustainable alternatives.

Design/methodology/approach

The authors used the Ricardo Wave software to evaluate the performance of fuel blends with varying ethanol content (represented as E0, E10, E25, E40, E55, E70, E85 and E100) in comparison to gasoline. The assessment involved different composition percentages and was conducted at various engine speeds (1,500, 3,000, 4,500 and 6,000 rpm). This methodology aims to provide a comprehensive understanding of how different ethanol-gasoline blends perform under different conditions.

Findings

The study found that, across all fuel blends, the highest brake power (BP) and the highest brake-specific fuel consumption (BSFC) were observed at 6,000 rpm. Additionally, it was noted that the presence of ethanol in gasoline fuel blends has the potential to increase both the BP and BSFC. These findings suggest that ethanol can positively impact the performance of spark-ignition engines, highlighting its potential as an alternative fuel.

Originality/value

This research contributes to the ongoing efforts in the automotive industry to find sustainable alternative fuels. The use of Ricardo Wave software for performance assessment and the comprehensive exploration of various ethanol-gasoline blends at different engine speeds add to the originality of the study. The emphasis on the potential of ethanol to enhance engine performance provides valuable insights for motor vehicle manufacturers and researchers working on alternative fuel solutions.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 25 December 2023

Zihan Dang and Naiming Xie

Assembly line is a common production form and has been effectively used in many industries, but the imprecise processing time of each process makes production line balancing and…

Abstract

Purpose

Assembly line is a common production form and has been effectively used in many industries, but the imprecise processing time of each process makes production line balancing and capacity forecasting the most troublesome problems for production managers. In this paper, uncertain man-hours are represented as interval grey numbers, and the optimization problem of production line balance in the case of interval grey man-hours is studied to better evaluate the production line capacity.

Design/methodology/approach

First, this paper constructs the basic model of assembly line balance optimization for the single-product scenario, and on this basis constructs an assembly line balance optimization model under the multi-product scenario with the objective function of maximizing the weighted greyscale production line balance rate, second, this paper designs a simulated annealing algorithm to solve problem. A neighborhood search strategy is proposed, based on assembly line balance optimization, an assembly line capacity evaluation method with interval grey man-hour characteristics is designed.

Findings

This paper provides a production line balance optimization scheme with uncertain processing time for multi-product scenarios and designs a capacity evaluation method to provide managers with scientific management strategies so that decision-makers can scientifically solve the problems that the company's design production line is quite different from the actual production situation.

Originality/value

There are few literary studies on combining interval grey number with assembly line balance optimization. Therefore, this paper makes an important contribution in this regard.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 29 December 2023

Noah Ray and Il Yong Kim

Fiber reinforced additive manufacturing (FRAM) is an emerging technology that combines additive manufacturing and composite materials. As a result, design freedom offered by the…

Abstract

Purpose

Fiber reinforced additive manufacturing (FRAM) is an emerging technology that combines additive manufacturing and composite materials. As a result, design freedom offered by the manufacturing process can be leveraged in design optimization. The purpose of the study is to propose a novel method that improves structural performance by optimizing 3D print orientation of FRAM components.

Design/methodology/approach

This work proposes a two-part design optimization method that optimizes 3D global print orientation and topology of a component to improve a structural objective function. The method considers two classes of design variables: (1) print orientation design variables and (2) density-based topology design variables. Print orientation design variables determine a unique 3D print orientation to influence anisotropic material properties. Topology optimization determines an optimal distribution of material within the optimized print orientation.

Findings

Two academic examples are used to demonstrate basic behavior of the method in tension and shear. Print orientation and sequential topology optimization improve structural compliance by 90% and 58%, respectively. An industry-level example, an aerospace component, is optimized. The proposed method is used to achieve an 11% and 15% reduction of structural compliance compared to alternative FRAM designs. In addition, compliance is reduced by 43% compared to an equal-mass aluminum design.

Originality/value

Current research surrounding FRAM focuses on the manufacturing process and neglects opportunities to leverage design freedom provided by FRAM. Previous FRAM optimization methods only optimize fiber orientation within a 2D plane and do not establish an optimized 3D print orientation, neglecting exploration of the entire orientation design space.

Article
Publication date: 2 February 2022

Munir Ahmed, Muhammad Shakaib and Mubashir Ali Siddiqui

Combustion of fuel with oxidizer inside a combustion chamber of an internal combustion engine forms inevitable oxides of nitrogen (NOx) due to high temperature at different…

Abstract

Purpose

Combustion of fuel with oxidizer inside a combustion chamber of an internal combustion engine forms inevitable oxides of nitrogen (NOx) due to high temperature at different locations of the combustion chamber. This study aims to quantify NOx formed inside the combustion chamber using two fuels, a conventional diesel (n-heptane) and a biodiesel (methyl oleate).

Design/methodology/approach

This research uses a computational fluid dynamics simulation of chemically reacting fluid flow to quantify and compare oxides of nitrogen (NOx) in a compression ignition (CI) engine. The study expends species transport model of ANSYS FLUENT. The simulation model has provided the temperature profile inside the combustion chamber, which is subsequently used to calculate NOx using the NOx model. The simulation uses a single component hydrocarbon and oxygenated hydrocarbon to represent fuels; for instance, it uses n-heptane (C7H16) for diesel and methyl-oleate (C19H36O2) for biodiesel. A stoichiometric air–fuel mixture is used for both fuels. The simulation runs a single cylinder CI engine of 650 cm3 swept volume with inlet and exhaust valves closed.

Findings

The pattern for variation of velocity, an important flow parameter, which affects combustion and subsequently oxides of nitrogen (NOx) formation at different piston locations, is similar for the two fuels. The variations of in-cylinder temperature and NOx formation with crank angles have similar patterns for the fuels, diesel and biodiesel. However, the numerical values of in-cylinder temperature and mass fraction of NOx are different. The volume averaged static peak temperatures are 1,013 K in case of diesel and 1,121 K in case of biodiesel, while the mass averaged mass fractions of NOx are 15 ppm for diesel and 141 ppm for biodiesel. The temperature rise after combustion is more in case of biodiesel, which augments the oxides of nitrogen formation. A new parameter, relative mass fraction of NOx, yields 28% lower value for biodiesel than for diesel.

Originality/value

This work uses a new concept of simulating simple chemical reacting system model to quantify oxides of NOx using single component fuels. Simplification has captured required fluid flow data to analyse NOx emission from CI engine while reducing computational time and expensive experimental tests.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Case study
Publication date: 27 February 2024

Digbijay Nayak and Arunaditya Sahay

The case study has been prepared for management students/business executives to understand electric vehicle (EV) business, business environment, industry competition and strategic…

Abstract

Learning outcomes

The case study has been prepared for management students/business executives to understand electric vehicle (EV) business, business environment, industry competition and strategic planning and strategy implementation.

Case overview/synopsis

The size of the Indian passenger vehicle market was valued at US$32.70bn in 2021; it was projected to touch US$54.84bn by 2027 with a Compound Annual Growth Rate (CAGR) of more than 9% during the period 2022–2027. The passenger vehicle industry, a part of the overall automotive industry, was expected to grow at a rapid pace, as the Indian economy was rising at the fastest rate. However, the Government of India (GoI) had put a condition on the growth scenario by mandating that 100% of vehicles produced would be EVs by 2030. Tata Motors (TaMo), a domestic player in the market, had been facing a challenging competitive environment. Although it had been incurring losses, it had successfully ventured into the EV business. TaMo had taken advantage of the first mover by creating an electric mobility business vertical to enable the company to deliver on its aspiration of providing innovative and competitive e-mobility solutions. TaMo leadership had been putting efforts to scale up the electric mobility business, thus, contributing to GoI’s plan for electric mobility. Shailesh Chandra, president of electric mobility business, had a big task in hand. He had to scale up EV production and sales despite insufficient infrastructure for charging and shortages of electronic components for manufacturing.

Complexity academic level

The case study has been prepared for management students/business executives for strategic management class. It is recommended that the case study is distributed in advance so that the students can prepare well in advance for classroom discussions. Groups will be created to delve into details for a specific question. While one group will make their presentation, the other groups will question the solution provided and give suggestions.

Supplementary materials

Teaching notes are available for educators only.

Subject code

CSS 11: Strategy.

Details

Emerald Emerging Markets Case Studies, vol. 14 no. 1
Type: Case Study
ISSN: 2045-0621

Keywords

Open Access
Article
Publication date: 7 December 2023

Lala Hu and Angela Basiglio

This paper aims at understanding how automotive firms integrate customer relationship management (CRM) tools and big data analytics (BDA) into their marketing strategies to…

3730

Abstract

Purpose

This paper aims at understanding how automotive firms integrate customer relationship management (CRM) tools and big data analytics (BDA) into their marketing strategies to enhance total quality management (TQM) after the coronavirus disease (COVID-19).

Design/methodology/approach

A qualitative methodology based on a multiple-case study was adopted, involving the collection of 18 interviews with eight leading automotive firms and other companies responsible for their marketing and CRM activities.

Findings

Results highlight that, through the adoption of CRM technology, automotive firms have developed best practices that positively impact business performance and TQM, thereby strengthening their digital culture. The challenges in the implementation of CRM and BDA are also discussed.

Research limitations/implications

The study suffers from limitations related to the findings' generalizability due to the restricted number of firms operating in a single industry involved in the sample.

Practical implications

Findings suggest new relational approaches and opportunities for automotive companies deriving from the use of CRM and BDA under an overall customer-oriented approach.

Originality/value

This research analyzes how CRM and BDA improve the marketing and TQM processes in the automotive industry, which is undergoing deep transformation in the current context of digital transformation.

Details

The TQM Journal, vol. 36 no. 9
Type: Research Article
ISSN: 1754-2731

Keywords

Open Access
Article
Publication date: 16 April 2024

Michael Rachinger and Julian M. Müller

Business Model Innovation is increasingly created by an ecosystem of related companies. This paper aims to investigate the transition of a manufacturing ecosystem toward electric…

Abstract

Purpose

Business Model Innovation is increasingly created by an ecosystem of related companies. This paper aims to investigate the transition of a manufacturing ecosystem toward electric vehicles from a business model perspective.

Design/methodology/approach

The authors investigate an automotive manufacturing ecosystem that is in transition toward electric and electrified vehicles, conducting semi-structured interviews with 46 informants from 27 ecosystem members.

Findings

The results reveal that the actions of several ecosystem members are driven by regulations relating to emissions. Novel requirements regarding components and complementary offers necessitate the entry of actors from other industries and the formation of new ecosystem members. While the newly emerged ecosystem has roots in an established ecosystem, it relies on new value offers. Further, the findings highlight the importance of ecosystem governance, while the necessary degree of change in the members' business models depends on their roles and positions in the ecosystem. Therefore, upstream suppliers of components must perform business model adaptation, whereas downstream providers must perform more complex business model innovation.

Originality/value

The paper is among the first to investigate an entire manufacturing ecosystem and analyze its transition toward electric vehicles and the implications for business model innovation.

Details

Journal of Manufacturing Technology Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 17 November 2023

Ahmad Ebrahimi and Sara Mojtahedi

Warranty-based big data analysis has attracted a great deal of attention because of its key capabilities and role in improving product quality while minimizing costs. Information…

Abstract

Purpose

Warranty-based big data analysis has attracted a great deal of attention because of its key capabilities and role in improving product quality while minimizing costs. Information and details about particular parts (components) repair and replacement during the warranty term, usually stored in the after-sales service database, can be used to solve problems in a variety of sectors. Due to the small number of studies related to the complete analysis of parts failure patterns in the automotive industry in the literature, this paper focuses on discovering and assessing the impact of lesser-studied factors on the failure of auto parts in the warranty period from the after-sales data of an automotive manufacturer.

Design/methodology/approach

The interconnected method used in this study for analyzing failure patterns is formed by combining association rules (AR) mining and Bayesian networks (BNs).

Findings

This research utilized AR analysis to extract valuable information from warranty data, exploring the relationship between component failure, time and location. Additionally, BNs were employed to investigate other potential factors influencing component failure, which could not be identified using Association Rules alone. This approach provided a more comprehensive evaluation of the data and valuable insights for decision-making in relevant industries.

Originality/value

This study's findings are believed to be practical in achieving a better dissection and providing a comprehensive package that can be utilized to increase component quality and overcome cross-sectional solutions. The integration of these methods allowed for a wider exploration of potential factors influencing component failure, enhancing the validity and depth of the research findings.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 19 January 2024

Ila Manuj, Michael Herburger and Saban Adana

While, supply chain resilience (SCRES) continues to be a dominant topic in both academic and business literature and has gained more attention recently, there is limited knowledge…

Abstract

Purpose

While, supply chain resilience (SCRES) continues to be a dominant topic in both academic and business literature and has gained more attention recently, there is limited knowledge on SCRES capabilities specific to business functions. The purpose of this paper is to identify and investigate capabilities shared between supply, operations and logistics that are most important for SCRES.

Design/methodology/approach

To address this gap, the authors followed a multi-method research approach. First, the authors used the grounded theory method to generate a theoretical framework based on interviews with 51 managers from five companies in automotive SCs. Next, the authors empirically validated the framework using a survey of 340 SC professionals from the manufacturing industry.

Findings

Five significant capabilities emerged from the qualitative study; all were significant in empirical validation. This research advances the knowledge of SCRES as it informs managerial decision-making by identifying capabilities common to supply, logistics and operations that impact SCRES.

Originality/value

This research advances the knowledge of SCRES as it informs managerial decision-making by identifying capabilities common to supply, logistics and operations that impact SCRES. In addition, the findings of this research help managers better allocate resources among significant capabilities.

Details

Journal of Business & Industrial Marketing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0885-8624

Keywords

Content available
Article
Publication date: 3 April 2024

Usha Ramanathan, M. Mathirajan and A.S. Balakrishnan

The COVID-19 situation affected the whole landscape of retailing in India and around the world. However, some businesses have used the pandemic-related difficulties into…

Abstract

Purpose

The COVID-19 situation affected the whole landscape of retailing in India and around the world. However, some businesses have used the pandemic-related difficulties into opportunities. E-tailing is one of the ways that helped people in India to continue shopping their essential products and choosing their luxury products without making any physical visits during the lockdown. This research understands the current situation through an observation study and suggests the e-tailing model suitable during the COVID-19 and beyond.

Design/methodology

We used secondary data to make the observational study. We also conducted two case studies and interviews with grocery shops and an automotive company.

Findings

This research suggests a simple collaborative e-tailing model combining all supply chain players to reduce people’s movement, timely delivery and enhanced service to meet customers demand during the lockdown period.

Originality/value

This paper has considered two real cases for discussion and also obtained information from public domain. The proposed model has been discussed with the case companies, and it hoped to support business planning for online services.

Details

Benchmarking: An International Journal, vol. 31 no. 3
Type: Research Article
ISSN: 1463-5771

Keywords

1 – 10 of 114