Search results

1 – 10 of over 1000
Article
Publication date: 1 March 2006

Mingjun Zhang, Weimin Tao, William Fisher and Tzyh‐Jong Tarn

For semiconductor and gene‐chip microarray fabrication, robots are widely used to handle workpieces. It is critical that robots can calibrate themselves regularly and estimate…

Abstract

Purpose

For semiconductor and gene‐chip microarray fabrication, robots are widely used to handle workpieces. It is critical that robots can calibrate themselves regularly and estimate workpiece pose automatically. This paper proposes an industrial method for automatic robot calibration and workpiece pose estimation.

Design/methodology/approach

The methods have been implemented using an air‐pressure sensor and a laser sensor.

Findings

Experimental results conducted in an industrial manufacturing environment show efficiency of the methods.

Originality/value

The contribution of this paper consists of an industrial solution to automatic robot calibration and workpiece pose estimation for automatic semiconductor and gene‐chip microarray fabrication.

Details

Industrial Robot: An International Journal, vol. 33 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 March 2023

Xiaojun Wu, Bo Liu, Peng Li and Yunhui Liu

Existing calibration methods mainly focus on the camera laser-plane calibration of a single laser-line length, which is not convenient and cannot guarantee the consistency of the…

Abstract

Purpose

Existing calibration methods mainly focus on the camera laser-plane calibration of a single laser-line length, which is not convenient and cannot guarantee the consistency of the results when several three-dimensional (3D) scanners are involved. Thus, this study aims to provide a unified step for different laser-line length calibration requirements for laser profile measurement (LPM) systems.

Design/methodology/approach

3D LPM is the process of converting physical objects into 3D digital models, wherein camera laser-plane calibration is critical for ensuring system precision. However, conventional calibration methods for 3D LPM typically use a calibration target to calibrate the system for a single laser-line length, which needs multiple calibration patterns and makes the procedure complicated. In this paper, a unified calibration method was proposed to automatically calibrate the camera laser-plane parameters for the LPM systems with different laser-line lengths. The authors designed an elaborate planar calibration target with different-sized rings that mounted on a motorized linear platform to calculate the laser-plane parameters of the LPM systems. Then, the camera coordinates of the control points are obtained using the intersection line between the laser line and the planar target. With a new proposed error correction model, the errors caused by hardware assembly can be corrected. To validate the proposed method, three LPM devices with different laser-line lengths are used to verify the proposed system. Experimental results show that the proposed method can calibrate the LPM systems with different laser-line lengths conveniently with standard steps.

Findings

The repeatability and accuracy of the proposed calibration prototypes were evaluated with high-precision workpieces. The experiments have shown that the proposed method is highly adaptive and can automatically calibrate the LPM system with different laser-line lengths with high accuracy.

Research limitations/implications

In the repeatability experiments, there were errors in the measured heights of the test workpieces, and this is because the laser emitter had the best working distance and laser-line length.

Practical implications

By using this proposed method and device, the calibration of the 3D scanning laser device can be done in an automatic way.

Social implications

The calibration efficiency of a laser camera device is increased.

Originality/value

The authors proposed a unified calibration method for LPM systems with different laser-line lengths that consist of a motorized linear joint and a calibration target with elaborately designed ring patterns; the authors realized the automatic parameter calibration.

Details

Robotic Intelligence and Automation, vol. 43 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 1 December 1997

G.R.M. Green

Discusses the various methods that are used for measuring the viscosity of paints and inks in the laboratory environment and suggests what equipment is most suitable for different…

1036

Abstract

Discusses the various methods that are used for measuring the viscosity of paints and inks in the laboratory environment and suggests what equipment is most suitable for different applications. Identifies the most common sources of errors in making measurements and emphasizes the importance of calibration in obtaining accurate and reproducible results.

Details

Pigment & Resin Technology, vol. 26 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Content available
Article
Publication date: 1 June 1998

45

Abstract

Details

Sensor Review, vol. 18 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 19 January 2015

Haixia Wang, Xiao Lu, Zhanyi Hu and Yuxia Li

The purpose of this paper is to present a fully automatic calibration method for hand-eye serial robot system is presented in this paper. The so-called “fully automatic” is meant…

Abstract

Purpose

The purpose of this paper is to present a fully automatic calibration method for hand-eye serial robot system is presented in this paper. The so-called “fully automatic” is meant to calibrate the robot body, the hand-eye relation, and the used measuring binocular system at the same time.

Design/methodology/approach

The calibration is done by controlling the joints to rotate several times one by one in the reverse order (i.e. from the last one to the first one), and simultaneously take pictures of the checkerboard patterns by the stereo camera system attached on the end-effector, then the whole robot system can be calibrated automatically from these captured images. In addition, a nonlinear optimization step is used to further refine the calibration results.

Findings

The proposed method is essentially based on an improved screw axis identification method, and it needs only a mirror and some paper checkerboard patterns without resorting to any additional costly measuring instrument.

Originality/value

Simulations and real experiments on MOTOMAN-UP6 robot system demonstrate the feasibility and effectiveness of the proposed method.

Details

Industrial Robot: An International Journal, vol. 42 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 January 2021

Ruolong Qi, Yuangui Tang and Ke Zhang

For some special manipulators such as the ones work at the space station, nuclear or some other unmanned environments, the overload, collision, vibration, temperature change or…

Abstract

Purpose

For some special manipulators such as the ones work at the space station, nuclear or some other unmanned environments, the overload, collision, vibration, temperature change or release of the internal stress would affect the structural parameters. And thus the operation precision might constantly decrease in long-term use. In these unmanned environments, the unattended manipulators should calibrate itself when they execute high precision operations or proceed self-maintenances. The purpose of this paper is to propose an automatic visual assistant on-line calibration (AVOC) method based on multi-markers.

Design/methodology/approach

A camera fixed on the end of the manipulator is used to measure one to three identification points, which forms an unstable multi-sensor eye-in-hand system. A Gaussian motion method which combines the linear quadratic regulator control and extended Kalman filter together is proposed to make the manipulator track the planned trajectories when its inaccurate structural parameters form uncertain motion errors. And a Monte-Carlo method is proposed to form a high precision and stable signal acquisition when the visual system has measurement errors and intermittent signal feedback. An automatic sampling process is adopted to select the optimal measurement points basing on their variances.

Findings

Data analysis and experiment results prove the efficiency and feasibility of the method proposed in this paper. With this method, the positioning accuracy is largely promoted from about 2 mm to 0.04–0.05 mm.

Originality/value

Experiments were carried out successfully on a manipulator in a life sciences glove box that will work at the Chinese space station. It is a low cost and efficient manipulator calibration method. The whole autonomic calibration process takes less than 10 min and requires no human intervention. In addition, this method not only can be used in the calibration of other unmanned articulated manipulator that works in deep ocean, nuclear industry or space but also be useful for the maintenance work in modern factories owing a lot of industrial robots.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 5 September 2022

Faizan Badar, Lionel T. Dean, Jennifer Loy, Michael Redmond, Luigi-Jules Vandi and James I. Novak

This study aims to evaluate the color accuracy of HP Jet Fusion 580 3D printing, comparing 3D-printed outcomes against original digital input colors.

138

Abstract

Purpose

This study aims to evaluate the color accuracy of HP Jet Fusion 580 3D printing, comparing 3D-printed outcomes against original digital input colors.

Design/methodology/approach

A custom cyan, magenta, yellow and black (CMYK) and red, green, blue (RGB) color chart was applied to the top, bottom and side surfaces of a 3D model. Four of each model were 3D-printed on a HP Jet Fusion 580, and half the samples were finished with a cyanoacrylate gloss surface finish, while half were left in raw form. A spectrophotometer was used to document CIELAB (L*a*b*) data, and comparisons made to the original input colors, including calculation of ΔE.

Findings

The CMYK samples were significantly more accurate than RGB samples, and grayscale samples in both color spaces were the most accurate of all. Typically, CMYK swatches were darker than the input values, and gloss samples were consistently darker than raw samples. The chromaticity (a*b*) range was found to be significantly smaller than what can be achieved digitally, with highly saturated colors unable to be produced by the printer.

Originality/value

This is the first study, to the best of the authors’ knowledge, to characterize the full color spectrum possible with the HP Jet Fusion 580, recommending that designers use the CMYK color space when applying colors and textures to 3D models. A quick-reference color chart has been provided; however, it is recommended that future research focus on developing a color management profile to better map digital colors to the capabilities of the printer.

Details

Rapid Prototyping Journal, vol. 29 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 December 2017

Dan Zhao, Yunbo Bi and Yinglin Ke

This paper aims to propose a united kinematic calibration method for a dual-machine system in automatic drilling and riveting. The method takes both absolute and relative pose…

Abstract

Purpose

This paper aims to propose a united kinematic calibration method for a dual-machine system in automatic drilling and riveting. The method takes both absolute and relative pose accuracy into account, which will largely influence the machining accuracy of the dual-machine system and assembly quality.

Design/methodology/approach

A comprehensive kinematic model of the dual-machine system is established by the superposition of sub-models with pose constraints, which involves base frame parameters, kinematic parameters and tool frame parameters. Based on the kinematic model and the actual pose error data measured by a laser tracker, the parameters of coordinated machines are identified by the Levenberg–Marquardt method as a multi-objective nonlinear optimization problem. The identified parameters of the coordinated machines will be used in the control system.

Findings

A new calibration method for the dual-machine system is developed, including a comprehensive kinematic model and an efficient parameter identification method. The experiment results show that with the proposed method, the pose accuracy of the dual-machine system was remarkably improved, especially the relative position and orientation errors.

Practical implications

This method has been used in an aircraft assembly project. The calibrated dual-machine system shows a good performance on system coordination and machining accuracy.

Originality/value

This paper proposes a new method with high accuracy and efficiency for the dual-machine system calibration. The research can be extended to multi-machine and multi-robot fields to improve the system precision.

Article
Publication date: 17 July 2019

Mustafa Cakir and Cengiz Deniz

The purpose of this study is to present a novel method for industrial robot TCP (tool center point) calibration. The proposed method offers fully automated robot TCP calibration…

Abstract

Purpose

The purpose of this study is to present a novel method for industrial robot TCP (tool center point) calibration. The proposed method offers fully automated robot TCP calibration within a defined cycle time. The method is applicable for large-scale installations due to its zero cost for each robot.

Design/methodology/approach

Precise and expensive measuring equipment or specially designed reference devices are required for robot calibration. The calibration can be performed by using only one plane plate in this method, and the calibration procedure is defined step by step: the robot moves to the target plane position. Then, the TCP touches the plane and the actual robot configuration is recorded. Then robot moves back into position and the same step is repeated for a new sample. Alternatively, the robot can be stationary and the plane can be moved towards the robot TCP. TCP is calculated by processing the difference of the contact points recorded at different positions. The process is fully automated. No special equipment is used. The calculations are very simple, and the robot controller can easily be realized.

Findings

The conventional manual robot TCP calibration process takes about 15 min and takes more time in case of the high accuracy. The proposed method reduces this time to less than 3 min without operator support. Practical tests have shown that TCP calibration can be performed with 0.1-0.6 mm of accuracy. This solution is an automated process and does not require special installation and it also has approximately zero cost. For this reason, this study recommends using the proposed solution widely in areas where even one or hundreds of robots are located.

Research limitations/implications

In this study, the data were directly taken from the robot controller without using any special measuring equipment. The industrial robot used in the tests has no absolute calibration. The classical “four-point method” was used for reference TCP data. It is the initial acceptance that this process conducted with extreme care and by using a needle-tipped tool will not produce exact values. It was observed that deviation of the TCP from a fixed point in reorient motions was not more than 0.5 mm. This method has been validated for different bits. The pilot works for different robot applications in Ford Otosan Gölcük Plant have been completed and dissemination has started.

Originality/value

Although the approach uses is clear and simple, it is surprising that the calculation of TCP using plane equations has so far not been mentioned in the literature. The disadvantage of using either fixed point or sphere as a reference is that the TCP cannot automatically guide to the target. This problem was overcome with the use of a larger target plane plate and the process was fully automated. The proposed method can be widely used in practical applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 October 2014

Hui Pan, Na Li Wang and Yin Shi Qin

The purpose of this paper is to propose a method that calibrates the hand-eye relationship for eye-to-hand configuration and afterwards a rectification to improve the accuracy of…

Abstract

Purpose

The purpose of this paper is to propose a method that calibrates the hand-eye relationship for eye-to-hand configuration and afterwards a rectification to improve the accuracy of general calibration.

Design/methodology/approach

The hand-eye calibration of eye-to-hand configuration is summarized as a equation AX = XB which is the same as in eye-in-hand calibration. A closed-form solution is derived. To abate the impact of noise, a rectification is conducted after the general calibration.

Findings

Simulation and actual experiments confirm that the accuracy of calibration is obviously improved.

Originality/value

Only a calibration plane is required for the hand-eye calibration. Taking the impact of noise into account, a rectification is carried out after the general calibration and, as a result, that the accuracy is obviously improved. The method can be applied in many actual applications.

Details

Industrial Robot: An International Journal, vol. 41 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 1000