Search results

1 – 10 of 969
Case study
Publication date: 6 December 2023

Sundaravalli Narayanaswami and N Ravichandran

Jarsh Safety received an order of 500 units of its Model S helmet. However, the order must be delivered within 15 days. Jarsh Safety was founded by three engineering college…

Abstract

Jarsh Safety received an order of 500 units of its Model S helmet. However, the order must be delivered within 15 days. Jarsh Safety was founded by three engineering college peers, who conceptualized air-conditioned, industrial safety helmets. This innovative revolutionary product offered industrial workers not only safety but aesthetics and comfort. The founders hoped that the product could change the perception of safety helmets from mandatory wear to desired wear. The case details the production process, staffing, raw material required and procurement lead time.

Details

Indian Institute of Management Ahmedabad, vol. no.
Type: Case Study
ISSN: 2633-3260
Published by: Indian Institute of Management Ahmedabad

Keywords

Article
Publication date: 12 April 2024

Mandeep Singh, Deepak Bhandari and Khushdeep Goyal

The purpose of this paper is to examine the mechanical characteristics and optimization of wear parameters of hybrid (TiO2 + Y2O3) nanoparticles with Al matrix using squeeze…

Abstract

Purpose

The purpose of this paper is to examine the mechanical characteristics and optimization of wear parameters of hybrid (TiO2 + Y2O3) nanoparticles with Al matrix using squeeze casting technique.

Design/methodology/approach

The hybrid aluminium matrix nanocomposites (HAMNCs) were fabricated with varying concentrations of titanium oxide (TiO2) and yttrium oxide (Y2O3), from 2.5 to 10 Wt.% in 2.5 Wt.% increments. Dry sliding wear test variables were optimized using the Taguchi method.

Findings

The introduction of hybrid nanoparticles in the aluminium (Al) matrix was evenly distributed in contrast to the base matrix. HAMNC6 (5 Wt.% TiO2 + 5 Wt.% Y2O3) reported the maximum enhancement in mechanical properties (tensile strength, flexural strength, impact strength and density) and decrease in porosity% and elongation% among other HAMNCs. The results showed that the optimal combination of parameters to achieve the lowest wear rate was A3B3C1, or 15 N load, 1.5 m/s sliding velocity and 200 m sliding distance. The sliding distance showed the greatest effect on the dry sliding wear rate of HAMNC6 followed by applied load and sliding velocity. The fractured surfaces of the tensile sample showed traces of cracking as well as substantial craters with fine dimples and the wear worn surfaces were caused by abrasion, cracks and delamination of HAMNC6.

Originality/value

Squeeze-cast Al-reinforced hybrid (TiO2+Y2O3) nanoparticles have been investigated for their impact on mechanical properties and optimization of wear parameters.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 December 2022

Reham Tarek Alnounou, Rawan Ahmed Asiri, Sara Ayman Alhindi, Layan Marwan Shams, Sadia Samar Ali and Eren Özceylan

Saudi Arabia's 2030 vision targets an increase of 34% in non-oil revenue participation in the GDP, thus the need for automation and digital transformation. The Company ER is a…

Abstract

Purpose

Saudi Arabia's 2030 vision targets an increase of 34% in non-oil revenue participation in the GDP, thus the need for automation and digital transformation. The Company ER is a market leader producing high-quality dairy products in the Kingdom and is a pioneer in the production industry. The company has recently increased the capacity of its milk factory to meet its vision. An investment was made to automate the pallet handling procedures at the milk factory to provide increased production for daily consumption. The new automation transition in Company ER's milk factory provides a unique opportunity to utilize lean management tools to improve the current automated processes before commercialization.

Design/methodology/approach

OEE (overall equipment effectiveness) will monitor losses for different operational losses in the new automated system and indicate system improvements, with 85% as the target. Based on DMADV (design, measure, analyze, design and validate) methodology, this study analyzes the entire automated pallet handling system. It uses lean tools to identify areas for improvement, identify waste elements and propose solutions to achieve Company ER's OEE targets.

Findings

In this paper, the outcomes will be presented as documented solutions that address the losses encountered in the production system, showing a 12.8% increase in the system's OEE.

Research limitations/implications

Owing the time and resource constraint, this study only involved automated pallet handling procedures in a milk production facility. Hence, the generalization of the result is slightly limited. More studies in several different processes and sectors are required.

Practical implications

This study provided a valuable tool for researchers for gaining deeper understanding regarding the lean manufacturing and its implementation. For practitioners, it is useful to evaluate the degree of lean manufacturing tools in their material handling systems.

Originality/value

This study is the first attempt to develop lean manufacturing constructs for evaluating the automated pallet handling procedures in a milk production facility.

Details

Benchmarking: An International Journal, vol. 30 no. 10
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 25 September 2023

Ang Yang, Yu Cao, Yang Liu, Qingcheng Zeng and Fangqiang Xiu

Magnet spot is the primary method to develop the automated guided vehicle (AGV) guidance system for many automated container terminals (ACT). Aiming to improve the high…

Abstract

Purpose

Magnet spot is the primary method to develop the automated guided vehicle (AGV) guidance system for many automated container terminals (ACT). Aiming to improve the high flexibility of AGV operation in ACT, this paper aims to address the problem of technical stability leading to ACT production paralysis and propose a mini-terminal AGV robot for testing laser simultaneous location and mapping (SLAM)-based methods in ACT operation scenarios.

Design/methodology/approach

This study developed a physical simulation robot for terminal AGV operations, providing a platform to test technical solutions for applying laser navigation-related technologies in ACTs. Then, the terminal-AGV navigation system framework is designed to apply the laser-SLAM-based method in the physical simulation robot. Finally, the experiment is conducted in the terminal operation scenario to verify the feasibility of the proposed framework for lased-SLAM-based method testing and analyze the performance of the different mini-terminal AGV robots.

Findings

A series of experiments are conducted to analyze the performance of the proposed mini-terminal AGV robot for laser-SLAM-based method testing. The experimental results show the validity and effectiveness of the AGV robot and AGV navigation system framework with better local map matching, loopback and absolute positional error.

Originality/value

The proposed mini-terminal AGV robot and AGV navigation system framework can provide a platform for innovative laser-SLAM-based method testing in ACTs applications. Therefore, this study can effectively meet the high requirements of ACT for maturity and stability of the laser navigation technical.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 10 July 2023

Md. Mehrab Hossain, Shakil Ahmed, S.M. Asif Anam, Irmatova Aziza Baxramovna, Tamanna Islam Meem, Md. Habibur Rahman Sobuz and Iffat Haq

Construction safety is a crucial aspect that has far-reaching impacts on economic development. But safety monitoring is often reliant on labor-based observations, which can be…

Abstract

Purpose

Construction safety is a crucial aspect that has far-reaching impacts on economic development. But safety monitoring is often reliant on labor-based observations, which can be prone to errors and result in numerous fatalities annually. This study aims to address this issue by proposing a cloud-building information modeling (BIM)-based framework to provide real-time safety monitoring on construction sites to enhance safety practices and reduce fatalities.

Design/methodology/approach

This system integrates an automated safety tracking mobile app to detect hazardous locations on construction sites, a cloud-based BIM system for visualization of worker tracking on a virtual construction site and a Web interface to visualize and monitor site safety.

Findings

The study’s results indicate that implementing a comprehensive automated safety monitoring approach is feasible and suitable for general indoor construction site environments. Furthermore, the assessment of an advanced safety monitoring system has been successfully implemented, indicating its potential effectiveness in enhancing safety practices in construction sites.

Practical implications

By using this system, the construction industry can prevent accidents and fatalities, promote the adoption of new technologies and methods with minimal effort and cost and improve safety outcomes and productivity. This system can reduce workers’ compensation claims, insurance costs and legal penalties, benefiting all stakeholders involved.

Originality/value

To the best of the authors’ knowledge, this study represents the first attempt in Bangladesh to develop a mobile app-based technological solution aimed at reforming construction safety culture by using BIM technology. This has the potential to change the construction sector’s attitude toward accepting new technologies and cultures through its convenient choice of equipment.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 12 December 2023

M.A. Xianglin, Haochen Cai, Qiming Yang, Gang Wang and Kun Mao

This paper establishes a quality model for automation assembly of range hood impeller based on generalized grey relational degree, it improves the debugging efficiency of the…

Abstract

Purpose

This paper establishes a quality model for automation assembly of range hood impeller based on generalized grey relational degree, it improves the debugging efficiency of the newly developed assembly workstation.

Design/methodology/approach

First, spot check the trial production impellers and obtain three indexes that reflect the assembly quality of the impellers. Then, analyze the parameters that affect the assembly quality of the impeller using grey relational analysis (GRA), establish a model for the assembly quality of the range hood impeller based on the generalized grey relational degree and identify the main parameters. After that, analyze the transmission structure of automation assembly workstation, identify the reasons that affect parameters and propose improvement plans. Finally, a trial production is conducted on the automation assembly workstation after adopting the improved plan to verify the quality model of impeller automation assembly.

Findings

The research shows that compared to manual assembly, the automation assembly quality of the impeller using GRA model has been improved, shortening the debugging cycle of the newly developed assembly workstation.

Practical implications

The newly developed automation equipment will have some problems in the trial production stage, which often rely on the experience of engineers for debugging. In this paper, the automation assembly quality model of range hood impeller based on GRA is established, which can not only ensure the quality of finished impeller but also shorten the debugging cycle of the equipment. In addition, GRA can be widely used in the commissioning of other automation equipment.

Originality/value

This study has developed a set of impeller automation assembly workstation. The debugging method in the trial production stage is beneficial to shorten the trial production time and improve the economic benefits.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 22 May 2023

Robert Bogue

This paper aims to illustrate the growing role of robots in the electronics industries.

Abstract

Purpose

This paper aims to illustrate the growing role of robots in the electronics industries.

Design/methodology/approach

Following a short introduction, this paper discusses robotic applications and products in three sectors of the electronics industry: semiconductor processing, printed circuit manufacture and electronic product assembly. Finally, conclusions are drawn.

Findings

The major application in semiconductor manufacture is the handling of silicon wafers during both front- and back-end processes and products include cleanroom certified multi-axis robotic arms, some mounted on mobile platforms, and automated guided vehicles. Applications in printed circuit board production include component handling and insertion, soldering, inspection, testing and packing. These exploit Cartesian, SCARA and six-axis articulated robots and cobots play an important role where automated and manual processes operate in close proximity. Electronic product assembly applications include part handling, soldering, bonding and sealing, screw driving, test and inspection and packaging. Cobots offer the benefits of a small footprint which allows deployment in the often limited space and use in proximity to humans. As yet, robotic assembly of complex electronic products such as smartphones and computers has not been realised for technical reasons.

Originality/value

This study provides a detailed review of robotic products and applications in three key sectors of the electronics industries.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 22 September 2023

Nengsheng Bao, Yuchen Fan, Chaoping Li and Alessandro Simeone

Lubricating oil leakage is a common issue in thermal power plant operation sites, requiring prompt equipment maintenance. The real-time detection of leakage occurrences could…

Abstract

Purpose

Lubricating oil leakage is a common issue in thermal power plant operation sites, requiring prompt equipment maintenance. The real-time detection of leakage occurrences could avoid disruptive consequences caused by the lack of timely maintenance. Currently, inspection operations are mostly carried out manually, resulting in time-consuming processes prone to health and safety hazards. To overcome such issues, this paper proposes a machine vision-based inspection system aimed at automating the oil leakage detection for improving the maintenance procedures.

Design/methodology/approach

The approach aims at developing a novel modular-structured automatic inspection system. The image acquisition module collects digital images along a predefined inspection path using a dual-light (i.e. ultraviolet and blue light) illumination system, deploying the fluorescence of the lubricating oil while suppressing unwanted background noise. The image processing module is designed to detect the oil leakage within the digital images minimizing detection errors. A case study is reported to validate the industrial suitability of the proposed inspection system.

Findings

On-site experimental results demonstrate the capabilities to complete the automatic inspection procedures of the tested industrial equipment by achieving an oil leakage detection accuracy up to 99.13%.

Practical implications

The proposed inspection system can be adopted in industrial context to detect lubricant leakage ensuring the equipment and the operators safety.

Originality/value

The proposed inspection system adopts a computer vision approach, which deploys the combination of two separate sources of light, to boost the detection capabilities, enabling the application for a variety of particularly hard-to-inspect industrial contexts.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 14 April 2023

Hanwen Chen, Siyi Liu, Daoguang Yang and Di Zhang

This study aims to investigate the role of regional environmental transparency on corporate environmental disclosure.

Abstract

Purpose

This study aims to investigate the role of regional environmental transparency on corporate environmental disclosure.

Design/methodology/approach

This study uses the introduction of a nationwide automated air pollution monitoring network in China as a quasi-natural experiment and employs regression analysis. Robustness checks, including parallel trend test and placebo test, are performed to test the robustness of the results.

Findings

Sharing air pollution data with the public can improve corporate environmental disclosure. Firms with poorer environmental, social and governance (ESG) performance prefer to disclose less informative information after the automated network is implemented compared with firms with better ESG performance. The relationship between information sharing and corporate environmental transparency is more pronounced when local air pollution is severer, firms face stronger investor scrutiny and firms are from heavily polluting industries. The mechanism tests suggest the automated system can draw public environmental attention and improve governments’ aspiration for environmental governance. Finally, corporate environmental disclosure can reduce stock price crash risk and cost of equity.

Practical implications

Real-time pollution data reporting is an important solution to raising public environmental awareness and then enhancing the effectiveness of pollution control.

Social implications

This study has implications for policy-making regarding environmental governance and environmental disclosure.

Originality/value

This study confirms that pollution information transparency can motivate firms to increase environmental disclosure.

Details

Sustainability Accounting, Management and Policy Journal, vol. 14 no. 3
Type: Research Article
ISSN: 2040-8021

Keywords

Open Access
Article
Publication date: 5 April 2024

Chi Aloysius Ngong, Kesuh Jude Thaddeus and Josaphat Uchechukwu Joe Onwumere

This paper aims to examine the causation linking financial technology to economic growth in the East African Community states from 1997 to 2019.

Abstract

Purpose

This paper aims to examine the causation linking financial technology to economic growth in the East African Community states from 1997 to 2019.

Design/methodology/approach

Autoregressive distributed lag is used. Gross domestic product per capita proxies economic growth, automated teller machines, point of sale, debit card ownership and mobile banking measure financial technology.

Findings

The results unveil a significant relationship between financial technology and economic growth. The findings show bidirectional causality between automated teller machine and economic growth, with unidirectional causation from economic growth to point of sales and internet banking, mobile banking and government effectiveness to economic growth. The error correction term is negatively significant, demonstrating a long-term convergence between Fintech measures and economic growth.

Research limitations/implications

The governments should effectively enact and implement policies that protect investments in financial technologies to boost economic growth in the East African Community countries. The government should reduce taxes on financial technology equipment and related services. The use of automated teller machine, debit card ownership and internet banking should be encouraged through cashless transactions. Financial institutions should adopt cashless operation policies to encourage the use of financial technologies.

Originality/value

Research results on the bond between financial technology and economic growth are not conclusive. These studies demonstrate that technological innovations are double edged-swords, with both positive and negative sides. The results are conflicting; some reveal positive relationships, while others show negative links. Hence, research is required to fill the lacuna.

Details

Journal of Economics, Finance and Administrative Science, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2077-1886

Keywords

1 – 10 of 969