Search results

1 – 10 of 12
Open Access
Article
Publication date: 28 November 2017

Mansoor Alghamdi and William Teahan

The aim of this paper is to experimentally evaluate the effectiveness of the state-of-the-art printed Arabic text recognition systems to determine open areas for future…

6583

Abstract

Purpose

The aim of this paper is to experimentally evaluate the effectiveness of the state-of-the-art printed Arabic text recognition systems to determine open areas for future improvements. In addition, this paper proposes a standard protocol with a set of metrics for measuring the effectiveness of Arabic optical character recognition (OCR) systems to assist researchers in comparing different Arabic OCR approaches.

Design/methodology/approach

This paper describes an experiment to automatically evaluate four well-known Arabic OCR systems using a set of performance metrics. The evaluation experiment is conducted on a publicly available printed Arabic dataset comprising 240 text images with a variety of resolution levels, font types, font styles and font sizes.

Findings

The experimental results show that the field of character recognition for printed Arabic still requires further research to reach an efficient text recognition method for Arabic script.

Originality/value

To the best of the authors’ knowledge, this is the first work that provides a comprehensive automated evaluation of Arabic OCR systems with respect to the characteristics of Arabic script and, in addition, proposes an evaluation methodology that can be used as a benchmark by researchers and therefore will contribute significantly to the enhancement of the field of Arabic script recognition.

Details

PSU Research Review, vol. 1 no. 3
Type: Research Article
ISSN: 2399-1747

Keywords

Open Access
Article
Publication date: 13 September 2022

Mariusz Szóstak, Tomasz Nowobilski, Abdul-Majeed Mahamadu and David Caparrós Pérez

Unmanned aerial vehicles (UAV), colloquially called drones, are widely applied in many sectors of the economy, including the construction industry. They are used for building…

1623

Abstract

Purpose

Unmanned aerial vehicles (UAV), colloquially called drones, are widely applied in many sectors of the economy, including the construction industry. They are used for building inspections, damage assessment, land measurements, safety inspections, monitoring the progress of works, and others.

Design/methodology/approach

The study notes that UAV pose new, and not yet present, risks in the construction industry. New threats arise, among others, from the development of new technologies, as well as from the continuous automation and robotization of the construction industry. Education regarding the safe use of UAV and the proper use of drones has a chance to improve the safety of work when using these devices.

Findings

The procedure (protocol) was developed for the correct and safe preparation and planning of an unmanned aerial vehicle flight during construction operations.

Originality/value

Based on the analysis of available sources, no such complete procedure has yet been developed for the correct, i.e. compliant with applicable legal regulations and occupational health and safety issues, preparation for flying UAV. The verification and validation of the developed flight protocol was performed on a sample of over 100 different flight operations.

Details

International Journal of Intelligent Unmanned Systems, vol. 11 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 17 November 2023

Matthew Ikuabe, Clinton Aigbavboa and Ernest Kissi

In most developing countries, the delivery of construction project is still characterised by inefficiencies resulting from the use of outdated methods and techniques, which…

Abstract

Purpose

In most developing countries, the delivery of construction project is still characterised by inefficiencies resulting from the use of outdated methods and techniques, which retards project performance. Hence, the call for the implementation of innovative technologies such as humanoids in the execution of construction projects as it has been proven to be very effective in other sectors while improving productivity and quality of work. Consequently, this study looks at how humanoids can be used in the construction industry and what benefits they can bring.

Design/methodology/approach

The study employed a quantitative approach underpinned in post-positivist philosophical view using questionnaire as the instrument for data collection. The target respondents were construction professionals, and purposive sampling was used, while a response rate of 62.5% was gotten. The methods of data analysis were mean item score, standard deviation and one-sample t-test.

Findings

The findings revealed that humanoids can be used in progress tracking, auto-documentation and inspection and surveillance of tasks in construction activities. Also, the most important benefits of using humanoids in construction work were found to be shorter delivery times, fewer injuries and more accurate work.

Practical implications

The outcome of the study gives professionals and relevant stakeholders in construction and other interested parties' information about the areas where humanoids can be used and their benefits in construction.

Originality/value

The novelty of this study is that it is a pioneering study in South Africa on humanoids' usage in the construction industry. Also, it expands the existing borderline of the conservation of construction digitalisation for enhanced project execution.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 6
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 24 October 2018

Samuel Evans, Eric Jones, Peter Fox and Chris Sutcliffe

This paper aims to introduce a novel method for the analysis of open cell porous components fabricated by laser-based powder bed metal additive manufacturing (AM) for the purpose…

1132

Abstract

Purpose

This paper aims to introduce a novel method for the analysis of open cell porous components fabricated by laser-based powder bed metal additive manufacturing (AM) for the purpose of quality control. This method uses photogrammetric analysis, the extraction of geometric information from an image through the use of algorithms. By applying this technique to porous AM components, a rapid, low-cost inspection of geometric properties such as material thickness and pore size is achieved. Such measurements take on greater importance, as the production of porous additive manufactured orthopaedic devices increases in number, causing other, slower and more expensive methods of analysis to become impractical.

Design/methodology/approach

Here the development of the photogrammetric method is discussed and compared to standard techniques including scanning electron microscopy, micro computed tomography scanning and the recently developed focus variation (FV) imaging. The system is also validated against test graticules and simple wire geometries of known size, prior to the more complex orthopaedic structures.

Findings

The photogrammetric method shows an ability to analyse the variability in build fidelity of AM porous structures for use in inspection purposes to compare component properties. While measured values for material thickness and pore size differed from those of other techniques, the new photogrammetric technique demonstrated a low deviation when repeating measurements, and was able to analyse components at a much faster rate and lower cost than the competing systems, with less requirement for specific expertise or training.

Originality/value

The advantages demonstrated by the image-based technique described indicate the system to be suitable for implementation as a means of in-line process control for quality and inspection applications, particularly for high-volume production where existing methods would be impractical.

Details

Rapid Prototyping Journal, vol. 24 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 26 July 2021

Weifei Hu, Tongzhou Zhang, Xiaoyu Deng, Zhenyu Liu and Jianrong Tan

Digital twin (DT) is an emerging technology that enables sophisticated interaction between physical objects and their virtual replicas. Although DT has recently gained significant…

12113

Abstract

Digital twin (DT) is an emerging technology that enables sophisticated interaction between physical objects and their virtual replicas. Although DT has recently gained significant attraction in both industry and academia, there is no systematic understanding of DT from its development history to its different concepts and applications in disparate disciplines. The majority of DT literature focuses on the conceptual development of DT frameworks for a specific implementation area. Hence, this paper provides a state-of-the-art review of DT history, different definitions and models, and six types of key enabling technologies. The review also provides a comprehensive survey of DT applications from two perspectives: (1) applications in four product-lifecycle phases, i.e. product design, manufacturing, operation and maintenance, and recycling and (2) applications in four categorized engineering fields, including aerospace engineering, tunneling and underground engineering, wind engineering and Internet of things (IoT) applications. DT frameworks, characteristic components, key technologies and specific applications are extracted for each DT category in this paper. A comprehensive survey of the DT references reveals the following findings: (1) The majority of existing DT models only involve one-way data transfer from physical entities to virtual models and (2) There is a lack of consideration of the environmental coupling, which results in the inaccurate representation of the virtual components in existing DT models. Thus, this paper highlights the role of environmental factor in DT enabling technologies and in categorized engineering applications. In addition, the review discusses the key challenges and provides future work for constructing DTs of complex engineering systems.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 2 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 14 June 2021

Vennan Sibanda, Khumbulani Mpofu and John Trimble

In manufacturing, dedicated machine tools and flexible machine tools are failing to satisfy the ever-changing manufacturing demands of short life cycles and dynamic nature of…

1917

Abstract

Purpose

In manufacturing, dedicated machine tools and flexible machine tools are failing to satisfy the ever-changing manufacturing demands of short life cycles and dynamic nature of products. These machines are limited when new product designs are introduced. The solution lies in developing responsive machines that can be adjusted or be changed functionally when these change requirements arise. These machines are reconfigurable machines which are becoming the new focus, as they rapidly respond to product variety and volume changes. A sheet metal working machine known as a reconfigurable guillotine shear and bending press machine (RGS&BPM) has been developed. The purpose of this paper is to present a methodology, function-oriented design approach (FODA), which was developed for the design of the RGS&BPM.

Design/methodology/approach

The design of the machine is based on the six principles of reconfigurable manufacturing systems (RMSs), namely, modularity, scalability integrability, convertibility, diagnosability and customisability. The methodology seeks to optimise the design process of the RGS&BPM through a design of modules that make up the machine, enable its conversion and reconfiguration. The FODA is focussed on function identification to select the operational function required. Two main functions are recognised for the machine, these being cutting and bending; hence, the design revolves around these two and reconfigurability.

Findings

The developed design methodology was tested in the design of a prototype for the reconfigurable guillotine shear and bending press machine. The prototype is currently being manufactured and will be subjected to functional tests once completed. This paper is being presented not only to present the methodology by to show and highlight its practical applicability, as the prototype manufacturers have been enthusiastic about this new approach.

Research limitations/implications

The research was limited to the design methodology for the RGS&BPM, the machine which has been designed to completion using this methodology, with prototype being manufactured.

Practical implications

This study presents critical steps and considerations in the development of reconfigurable machines. The main thrust being to explore the best possibility of developing the machines with dual functionality that will assist in availing the technology to manufacturer. As the machine has been development, the success of the design can be directly attributed to the FODA methodology, among other contributing factors. It also highlights the significance of the principles of RMS in reconfigurable machine design.

Social implications

The RGS&BM machine is an answer for the small-to-medium enterprises (SMEs), as the machine replaces two machines with one, and the methodology ensures its affordable design. It contributes immensely to the machine availability by eliminating trial and error approaches.

Originality/value

This study presents a new approach to the design of reconfigurable dual machines using principles of RMS. As the targeted market is the SME, it is not limited to that as any entrepreneur may use the machine to their advantage. The design methodology presented contributes to the body of knowledge in dual reconfigurable machine tool design.

Details

Journal of Engineering, Design and Technology , vol. 19 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 1 October 2019

Laszlo Hetey, Eddy Neefs, Ian Thomas, Joe Zender, Ann-Carine Vandaele, Sophie Berkenbosch, Bojan Ristic, Sabrina Bonnewijn, Sofie Delanoye, Mark Leese, Jon Mason and Manish Patel

This paper aims to describe the development of a knowledge management system (KMS) for the Nadir and Occultation for Mars Discovery (NOMAD) instrument on board the ESA/Roscosmos…

1745

Abstract

Purpose

This paper aims to describe the development of a knowledge management system (KMS) for the Nadir and Occultation for Mars Discovery (NOMAD) instrument on board the ESA/Roscosmos 2016 ExoMars Trace Gas Orbiter (TGO) spacecraft. The KMS collects knowledge acquired during the engineering process that involved over 30 project partners. In addition to the documentation and technical data (explicit knowledge), a dedicated effort was made to collect the gained experience (tacit knowledge) that is crucial for the operational phase of the TGO mission and also for future projects. The system is now in service and provides valuable information for the scientists and engineers working with NOMAD.

Design/methodology/approach

The NOMAD KMS was built around six areas: official documentation, technical specifications and test results, lessons learned, management data (proposals, deliverables, progress reports and minutes of meetings), picture files and movie files. Today, the KMS contains 110 GB of data spread over 11,000 documents and more than 13,000 media files. A computer-aided design (CAD) library contains a model of the full instrument as well as exported sub-parts in different formats. A context search engine for both documents and media files was implemented.

Findings

The conceived KMS design is basic, flexible and very robust. It can be adapted to future projects of a similar size.

Practical implications

The paper provides practical guidelines on how to retain the knowledge from a larger aerospace project. The KMS tool presented here works offline, requires no maintenance and conforms to data protection standards.

Originality/value

This paper shows how knowledge management requirements for space missions can be fulfilled. The paper demonstrates how to transform the large collection of project data into a useful tool and how to address usability aspects.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 19 May 2022

Akhilesh S Thyagaturu, Giang Nguyen, Bhaskar Prasad Rimal and Martin Reisslein

Cloud computing originated in central data centers that are connected to the backbone of the Internet. The network transport to and from a distant data center incurs long…

1039

Abstract

Purpose

Cloud computing originated in central data centers that are connected to the backbone of the Internet. The network transport to and from a distant data center incurs long latencies that hinder modern low-latency applications. In order to flexibly support the computing demands of users, cloud computing is evolving toward a continuum of cloud computing resources that are distributed between the end users and a distant data center. The purpose of this review paper is to concisely summarize the state-of-the-art in the evolving cloud computing field and to outline research imperatives.

Design/methodology/approach

The authors identify two main dimensions (or axes) of development of cloud computing: the trend toward flexibility of scaling computing resources, which the authors denote as Flex-Cloud, and the trend toward ubiquitous cloud computing, which the authors denote as Ubi-Cloud. Along these two axes of Flex-Cloud and Ubi-Cloud, the authors review the existing research and development and identify pressing open problems.

Findings

The authors find that extensive research and development efforts have addressed some Ubi-Cloud and Flex-Cloud challenges resulting in exciting advances to date. However, a wide array of research challenges remains open, thus providing a fertile field for future research and development.

Originality/value

This review paper is the first to define the concept of the Ubi-Flex-Cloud as the two-dimensional research and design space for cloud computing research and development. The Ubi-Flex-Cloud concept can serve as a foundation and reference framework for planning and positioning future cloud computing research and development efforts.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 31 March 2020

Victor Oyaro Gekara and Xuan-Vi Thanh Nguyen

This paper examines the port of Mombasa’s attempted implementation of computer-based terminal operating systems (TOS); the challenges faced and the outcomes. In addition to…

Abstract

This paper examines the port of Mombasa’s attempted implementation of computer-based terminal operating systems (TOS); the challenges faced and the outcomes. In addition to enhancing its operations efficiency, a key motivation for the technology was to facilitate better integration and connectivity to the Belt and Road as a key gateway along the key route. It utilised a qualitative single-case methodology, involving a combination of semi-structured interviews, non-participant observations and content analysis of relevant policy documents and reports provided by the port. The paper finds that the attempt to adopt and implement TOS at the port mostly failed as a result of a complex combination of technological, organisational and environmental factors. Most importantly, the wider business environment was ill equipped with the necessary information communication technology (ICT) infrastructure to support effective implementation. There was also a general lack of appropriately skilled workers to support and drive the same.

Details

Journal of International Logistics and Trade, vol. 18 no. 1
Type: Research Article
ISSN: 1738-2122

Keywords

1 – 10 of 12