Search results

1 – 10 of 47
Article
Publication date: 7 November 2023

Metin Sabuncu and Hakan Özdemir

This study aims to identify leather type and authenticity through optical coherence tomography.

Abstract

Purpose

This study aims to identify leather type and authenticity through optical coherence tomography.

Design/methodology/approach

Optical coherence tomography images taken from genuine and faux leather samples were used to create an image dataset, and automated machine learning algorithms were also used to distinguish leather types.

Findings

The optical coherence tomography scan results in a different image based on leather type. This information was used to determine the leather type correctly by optical coherence tomography and automatic machine learning algorithms. Please note that this system also recognized whether the leather was genuine or synthetic. Hence, this demonstrates that optical coherence tomography and automatic machine learning can be used to distinguish leather type and determine whether it is genuine.

Originality/value

For the first time to the best of the authors' knowledge, spectral-domain optical coherence tomography and automated machine learning algorithms were applied to identify leather authenticity in a noncontact and non-invasive manner. Since this model runs online, it can readily be employed in automated quality monitoring systems in the leather industry. With recent technological progress, optical coherence tomography combined with automated machine learning algorithms will be used more frequently in automatic authentication and identification systems.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 December 2023

Hao Wang, Hamzeh Al Shraida and Yu Jin

Limited geometric accuracy is one of the major challenges that hinder the wider application of additive manufacturing (AM). This paper aims to predict in-plane shape deviation for…

Abstract

Purpose

Limited geometric accuracy is one of the major challenges that hinder the wider application of additive manufacturing (AM). This paper aims to predict in-plane shape deviation for online inspection and compensation to prevent error accumulation and improve shape fidelity in AM.

Design/methodology/approach

A sequence-to-sequence model with an attention mechanism (Seq2Seq+Attention) is proposed and implemented to predict subsequent layers or the occluded toolpath deviations after the multiresolution alignment. A shape compensation plan can be performed for the large deviation predicted.

Findings

The proposed Seq2Seq+Attention model is able to provide consistent prediction accuracy. The compensation plan proposed based on the predicted deviation can significantly improve the printing fidelity for those layers detected with large deviations.

Practical implications

Based on the experiments conducted on the knee joint samples, the proposed method outperforms the other three machine learning methods for both subsequent layer and occluded toolpath deviation prediction.

Originality/value

This work fills a research gap for predicting in-plane deviation not only for subsequent layers but also for occluded paths due to the missing scanning measurements. It is also combined with the multiresolution alignment and change point detection to determine the necessity of a compensation plan with updated G-code.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 April 2022

Mamdouh Mohamed and Dai Q. Tran

The use of digital inspection or e-inspection of transportation projects has been proven as an efficient method over the last decade. A wide range of studies were dedicated to…

Abstract

Purpose

The use of digital inspection or e-inspection of transportation projects has been proven as an efficient method over the last decade. A wide range of studies were dedicated to developing and applying e-inspection techniques and technologies. However, there is a lack of a comprehensive systematic review and content analysis of using e-inspection in highway construction and maintenance projects. The main objectives of this study were to explore the current trend and identify relevant inspection technologies and their applications for highway construction projects.

Design/methodology/approach

A systematic review of 172 articles from 16 high-ranked academic journals in construction engineering and management published during 2000–2021 was conducted. This process resulted in 67 relevant articles included in the detailed content analysis. The analysis involved synthesizing six main construction elements and work types, nine typical inspection activities, and 23 technologies.

Findings

The result of the analysis showed that among the six construction elements and work types, bridge and hot mix asphalt (HMA) recorded the largest share of e-inspection research. For the nine inspection activities, progress monitoring of construction operations was the highest focused area of e-inspection research. The most common e-inspection technologies are geospatial tools, 3D modeling, and unmanned aircraft systems (UASs). Camera-based inspection has existed for decades, however, has limited research development. The critical success factors in implementing e-inspection in highway projects are sharing data among different technologies, inspector training, and reducing the cost of technology purchase.

Originality/value

This study is one of the first attempts to conduct a content analysis of the e-inspection implementation for highway projects. The findings of this study expose knowledge gaps in contemporary research related to implementation barriers such as cost of purchase and operation of e-inspection technologies and transferring data between technologies.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 7
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 18 October 2023

Temidayo O. Osunsanmi, Chigozie Collins Okafor and Clinton Ohis Aigbavboa

The implementation of smart maintenance (SM) has greatly benefited facility managers, construction project managers and other stakeholders within the built environment…

Abstract

Purpose

The implementation of smart maintenance (SM) has greatly benefited facility managers, construction project managers and other stakeholders within the built environment. Unfortunately, its actualization for stakeholders in the built environment in the fourth industrial revolution (4IR) era remains a challenge. To reduce the challenge, this study aims at conducting a bibliometric analysis to unearth the critical success factors supporting SM implementation. The future direction and practice of SM in the construction industry were also explored.

Design/methodology/approach

A bibliometric approach was adopted for reviewing articles extracted from the Scopus database. Keywords such as (“smart maintenance“) OR (“intelligent maintenance”) OR (“technological maintenance”) OR (“automated maintenance”) OR (“computerized maintenance”) were used to extract articles from the Scopus database. The studies were restricted between 2006 and 2021 to capture the 4IR era. The initial extracted papers were 1,048; however, 288 papers were selected and analysed using VOSviewer software.

Findings

The findings revealed that the critical success factors supporting the implementation of SM in the 4IR era are collaboration, digital twin design, energy management system and decentralized data management system. Regarding the future practice of SM in the 4IR era, it was also revealed that SM is possible to evolve into maintenance 4.0. This will support the autonomous maintenance of infrastructures in the built environment.

Research limitations/implications

The use of a single database contributed to the limitation of the findings from this study.

Practical implications

Despite the limitations, the findings of this study contributed to practice and research by providing stakeholders in the built environment with the direction of SM practice.

Originality/value

Stakeholders in the built environment have clamoured to implement SM in the 4IR era. This study provided the critical success factors for adopting SM, guaranteeing the 4IR era. It also provides the research trends and direction of SM practice.

Details

Journal of Facilities Management , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1472-5967

Keywords

Article
Publication date: 12 December 2022

Noha M. Hassan, Ameera Hamdan, Farah Shahin, Rowaida Abdelmaksoud and Thurya Bitar

To avoid the high cost of poor quality (COPQ), there is a constant need for minimizing the formation of defects during manufacturing through defect detection and process…

Abstract

Purpose

To avoid the high cost of poor quality (COPQ), there is a constant need for minimizing the formation of defects during manufacturing through defect detection and process parameters optimization. This research aims to develop, design and test a smart system that detects defects, categorizes them and uses this knowledge to enhance the quality of subsequent parts.

Design/methodology/approach

The proposed system integrates data collected from the deep learning module with the machine learning module to develop and improve two regression models. One determines if set process parameters would yield a defective product while the second model optimizes them. The deep learning model utilizes final product images to categorize the part as defective or not and determines the type of defect based on image analysis. The developed framework of the system was applied to the forging process to determine its feasibility during actual manufacturing.

Findings

Results reveal that implementation of such a smart process would lead to significant contributions in enhancing manufacturing processes through higher production rates of acceptable products and lower scrap rates or rework. The role of machine learning is evident due to numerous benefits which include improving the accuracy of the regression model prediction. This artificial intelligent system enhances itself by learning which process parameters could lead to a defective product and uses this knowledge to adjust the process parameters accordingly overriding any manual setting.

Research limitations/implications

The proposed system was applied only to the forging process but could be extended to other manufacturing processes.

Originality/value

This paper studies how an artificial intelligent (AI) system can be developed and used to enhance the yield of good products.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 7
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 5 October 2022

H.P.M.N.L.B. Moragane, B.A.K.S. Perera, Asha Dulanjalie Palihakkara and Biyanka Ekanayake

Construction progress monitoring (CPM) is considered a difficult and tedious task in construction projects, which focuses on identifying discrepancies between the as-built product…

Abstract

Purpose

Construction progress monitoring (CPM) is considered a difficult and tedious task in construction projects, which focuses on identifying discrepancies between the as-built product and the as-planned design. Computer vision (CV) technology is applied to automate the CPM process. However, the synergy between the CV and CPM in literature and industry practice is lacking. This study aims to fulfil this research gap.

Design/methodology/approach

A Delphi qualitative approach was used in this study by conducting two interview rounds. The collected data was analysed using manual content analysis.

Findings

This study identified seven stages of CPM; data acquisition, information retrieval, verification, progress estimation and comparison, visualisation of the results and schedule updating. Factors such as higher accuracy in data, less labourious process, efficiency and near real-time access are some of the significant enablers in instigating CV for CPM. Major challenges identified were occlusions and lighting issues in the site images and lack of support from the management. The challenges can be easily overcome by implementing suitable strategies such as familiarisation of the workforce with CV technology and application of CV research for the construction industry to grow with the technology in line with other industries.

Originality/value

This study addresses the gap pertaining to the synergy between the CV in CPM literature and the industry practice. This research contributes by enabling the construction personnel to identify the shortcomings and the opportunities to apply automated technologies concerning each stage in the progress monitoring process.

Details

Construction Innovation , vol. 24 no. 2
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 15 September 2022

Mohan Wang and Pin-Chao Liao

Hazard warning schemes provide efficient hazard recognition and promote project safety. Nevertheless, these schemes perform poorly because the warning information is calibrated…

Abstract

Purpose

Hazard warning schemes provide efficient hazard recognition and promote project safety. Nevertheless, these schemes perform poorly because the warning information is calibrated for individual characters and is not prioritized for the entire system. This study proposes a hazard warning scheme that prioritizes hazard characters from the inspection process based on the inspectors' experience.

Design/methodology/approach

First, hazard descriptions were decomposed into their characters, forming a double-layer network. Second, warning schemes based on cascading effects were proposed. Third, character-based warning schemes were simulated for various experiences.

Findings

The results show that when a specific hazard is detected, the degree centrality is the most effective parameter for prioritization, and hazard characters should be prioritized based on betweenness centrality for experienced inspectors, whereas degree centrality is preferred for novice inspectors.

Originality/value

The warning scheme theoretically supplements the information-processing theory in construction hazard warnings and provides a practical warning scheme with priority for the development of automated hazard navigation systems.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 1
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 10 July 2023

Md. Mehrab Hossain, Shakil Ahmed, S.M. Asif Anam, Irmatova Aziza Baxramovna, Tamanna Islam Meem, Md. Habibur Rahman Sobuz and Iffat Haq

Construction safety is a crucial aspect that has far-reaching impacts on economic development. But safety monitoring is often reliant on labor-based observations, which can be…

Abstract

Purpose

Construction safety is a crucial aspect that has far-reaching impacts on economic development. But safety monitoring is often reliant on labor-based observations, which can be prone to errors and result in numerous fatalities annually. This study aims to address this issue by proposing a cloud-building information modeling (BIM)-based framework to provide real-time safety monitoring on construction sites to enhance safety practices and reduce fatalities.

Design/methodology/approach

This system integrates an automated safety tracking mobile app to detect hazardous locations on construction sites, a cloud-based BIM system for visualization of worker tracking on a virtual construction site and a Web interface to visualize and monitor site safety.

Findings

The study’s results indicate that implementing a comprehensive automated safety monitoring approach is feasible and suitable for general indoor construction site environments. Furthermore, the assessment of an advanced safety monitoring system has been successfully implemented, indicating its potential effectiveness in enhancing safety practices in construction sites.

Practical implications

By using this system, the construction industry can prevent accidents and fatalities, promote the adoption of new technologies and methods with minimal effort and cost and improve safety outcomes and productivity. This system can reduce workers’ compensation claims, insurance costs and legal penalties, benefiting all stakeholders involved.

Originality/value

To the best of the authors’ knowledge, this study represents the first attempt in Bangladesh to develop a mobile app-based technological solution aimed at reforming construction safety culture by using BIM technology. This has the potential to change the construction sector’s attitude toward accepting new technologies and cultures through its convenient choice of equipment.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Content available
Article
Publication date: 12 April 2022

Monica Puri Sikka, Alok Sarkar and Samridhi Garg

With the help of basic physics, the application of computer algorithms in the form of recent advances such as machine learning and neural networking in textile Industry has been…

1475

Abstract

Purpose

With the help of basic physics, the application of computer algorithms in the form of recent advances such as machine learning and neural networking in textile Industry has been discussed in this review. Scientists have linked the underlying structural or chemical science of textile materials and discovered several strategies for completing some of the most time-consuming tasks with ease and precision. Since the 1980s, computer algorithms and machine learning have been used to aid the majority of the textile testing process. With the rise in demand for automation, deep learning, and neural networks, these two now handle the majority of testing and quality control operations in the form of image processing.

Design/methodology/approach

The state-of-the-art of artificial intelligence (AI) applications in the textile sector is reviewed in this paper. Based on several research problems and AI-based methods, the current literature is evaluated. The research issues are categorized into three categories based on the operation processes of the textile industry, including yarn manufacturing, fabric manufacture and coloration.

Findings

AI-assisted automation has improved not only machine efficiency but also overall industry operations. AI's fundamental concepts have been examined for real-world challenges. Several scientists conducted the majority of the case studies, and they confirmed that image analysis, backpropagation and neural networking may be specifically used as testing techniques in textile material testing. AI can be used to automate processes in various circumstances.

Originality/value

This research conducts a thorough analysis of artificial neural network applications in the textile sector.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 17 October 2022

Subhasis Das and Anindya Ghosh

In recent years, rough set theory has evolved as one of the most promising classification techniques. One of the cardinal uses of rough set theory is its application for rule…

Abstract

Purpose

In recent years, rough set theory has evolved as one of the most promising classification techniques. One of the cardinal uses of rough set theory is its application for rule generation. The purpose of this paper is to propose a real-time fabric inspection technique. This work deals with the multi-class classification of fabric defects using rough set theory.

Design/methodology/approach

This technique focuses on the classification of fabric defects using the effective decision rules envisaged by rough set theory. In the proposed work, the six features of 50 images have been used for multiclass classification of fabric defects.

Findings

In this work, 40 images were used for generation of decision rules and 10 unseen images were used for validation out of which nine images are accurately predicted by the proposed technique.

Originality/value

The proposed method accurately identified 9 out of 10 testing defects. The obtained decision rules provide an insight about the classification method which ensures that the prediction accuracy can be improved further by framing more robust decision rules with the help of a large training data set. Thus, with the support of modern computational systems this method is potent in getting recognition from the textile industry as a real-time classification technique.

Details

Research Journal of Textile and Apparel, vol. 27 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of 47