Search results

1 – 10 of over 2000
Article
Publication date: 26 October 2018

Song Hua, Huiyin Huang, Fangfang Yin and Chunling Wei

This paper aims to propose a constant-gain Kalman Filter algorithm based on the projection method and constant dimension projection, which ensures that the dimension of the…

Abstract

Purpose

This paper aims to propose a constant-gain Kalman Filter algorithm based on the projection method and constant dimension projection, which ensures that the dimension of the observation matrix obtained is maintained when there is a satellite with multiple sensors.

Design/methodology/approach

First, a time-invariant observation matrix is determined with the projection method, which does not require the Jacobi matrix to be calculated. Second, the constant-gain matrix replaces the EKF (extended Kalman filter) gain matrix, which requires online computation, considerably improving the stability and real-time properties of the algorithm.

Findings

The simulation results indicate that compared to the EKF algorithm, the constant-gain Kalman filter algorithm has a considerably lower computational burden and improved real-time properties and stability without a significant loss of accuracy. The algorithm based on the constant dimension projection has better real-time properties, simpler computations and greater fault tolerance than the conventional EKF algorithm when handling an attitude determination system with three or more star trackers.

Originality/value

In satellite attitude determination systems, the constant-gain Kalman Filter algorithm based on the projection method reduces the large computational burden and improve the real-time properties of the EKF algorithm.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 March 2022

Rong Wang, Jin Wu, Chong Li, Shengbo Qi, Xiangrui Meng, Xinning Wang and Chengxi Zhang

The purpose of this paper is to propose a high-precision attitude solution to solve the attitude drift problem caused by the dispersion of low-cost micro-electro-mechanical system…

Abstract

Purpose

The purpose of this paper is to propose a high-precision attitude solution to solve the attitude drift problem caused by the dispersion of low-cost micro-electro-mechanical system devices in strap-down inertial navigation attitude solution of micro-quadrotor.

Design/methodology/approach

In this study, a three-stage attitude estimation scheme that combines data preprocessing, gyro drifts prediction and enhanced unscented Kalman filtering (UKF) is proposed. By introducing a preprocessing model, the quaternion orientation is calculated as the composition of two algebraic quaternions, and the decoupling feature of the two quaternions makes the roll and pitch components independent of magnetic interference. A novel real-time based on differential value (DV) estimation algorithm is proposed for gyro drift. This novel solution prevents the impact of quartic characteristics and uses the iterative method to meet the requirement of real-time applications. A novel attitude determination algorithm, the pre-process DV-UKF algorithm, is proposed in combination with UKF based on the above solution and its characteristics.

Findings

Compared to UKF, both simulation and experimental results demonstrate that the pre-process DV-UKF algorithm has higher reliability in attitude determination. The dynamic errors in the three directions of the attitude are below 2.0°, the static errors are all less than 0.2° and the absolute attitude errors tailored by average are about 47.98% compared to the UKF.

Originality/value

This paper fulfils an identified need to achieve high-precision attitude estimation when using low-cost inertial devices in micro-quadrotor. The accuracy of the pre-process DV-UKF algorithm is superior to other products in the market.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 September 2006

Sun Jie, Zhao Yang, Sun Zhaowei and An Nan

To provide a new method to determine parameters of the attitude determination system facing micro‐core.

Abstract

Purpose

To provide a new method to determine parameters of the attitude determination system facing micro‐core.

Design/methodology/approach

Take example for attitude determination systems based on star‐sensor and fiber‐optic gyroscope combination and only based on star‐sensor. The optimum parameters of sensors are obtained by setting up of optimization design model of the attitude determination system adopting genetic algorithm.

Findings

Put forward a new concept of micro‐core aiming at a micro satellite. Further aiming at micro‐core, a new method which differs from traditional satellite design methods is adopted in this paper. The method proposed in this paper is instructive to the design of future micro satellites.

Research limitations/implications

The method proposed in this paper only applied to attitude determination system. With the development of this method, it is hoped that the method can apply to other systems of a micro satellite.

Practical implications

The method proposed in this paper is instructive to the engineering design of a micro satellite.

Originality/value

Put forward a new concept of micro‐core, and aiming at its design a new method is proposed to design the attitude determination system by adopting genetic algorithm. The method is different from traditional satellite design methods.

Details

Aircraft Engineering and Aerospace Technology, vol. 78 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 3 February 2020

Changhua Liu, Jide Qian, Zuocai Wang and Jin Wu

For fixed-wing micro air vehicles, the attitude determination is usually produced by the horizon/Global Navigation Satellite System (GNSS) in which the GNSS provides yaw…

Abstract

Purpose

For fixed-wing micro air vehicles, the attitude determination is usually produced by the horizon/Global Navigation Satellite System (GNSS) in which the GNSS provides yaw estimates, while roll and pitch are computed using horizon sensors. However, the attitude determination has been independently obtained from the two sensors, which will result in insufficient usage of data. Also, when implementing attitude determination algorithms on embedded platforms, the computational resources are highly restricted. This paper aims to propose a computationally efficient linear Kalman filter to solve the problem.

Design/methodology/approach

The observation model is in the form of a least-square optimization composed by GNSS and horizontal measurements. Analytical quaternion solution along with its covariance is derived to significantly speed up on-chip computation.

Findings

The reconstructed attitude from Horizon/GNSS is integrated with quaternion kinematic equation from gyroscopic data that builds up a fast linear Kalman filter. The proposed filter does not involve coupling effects presented in existing works and will be more robust encountering bad GNSS measurements.

Originality/value

Electronic systems are designed on a real-world fixed-wing plane. Experiments are conducted on this platform that show comparisons on the accuracy and computation execution time of the proposed method and existing representatives. The results indicate that the proposed algorithm is accurate and much faster computation speed in studied scenarios.

Details

Sensor Review, vol. 40 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 16 March 2015

Shengbo Sang, Ruiyong Zhai, Wendong Zhang, Qirui Sun and Zhaoying Zhou

This study aims to design a new low-cost localization platform for estimating the location and orientation of a pedestrian in a building. The micro-electro-mechanical systems…

Abstract

Purpose

This study aims to design a new low-cost localization platform for estimating the location and orientation of a pedestrian in a building. The micro-electro-mechanical systems (MEMS) sensor error compensation and the algorithm were improved to realize the localization and altitude accuracy.

Design/methodology/approach

The platform hardware was designed with common low-performance and inexpensive MEMS sensors, and with a barometric altimeter employed to augment altitude measurement. The inertial navigation system (INS) – extended Kalman filter (EKF) – zero-velocity updating (ZUPT) (INS-EKF-ZUPT [IEZ])-extended methods and pedestrian dead reckoning (PDR) (IEZ + PDR) algorithm were modified and improved with altitude determined by acceleration integration height and pressure altitude. The “AND” logic with acceleration and angular rate data were presented to update the stance phases.

Findings

The new platform was tested in real three-dimensional (3D) in-building scenarios, achieved with position errors below 0.5 m for 50-m-long route in corridor and below 0.1 m on stairs. The algorithm is robust enough for both the walking motion and the fast dynamic motion.

Originality/value

The paper presents a new self-developed, integrated platform. The IEZ-extended methods, the modified PDR (IEZ + PDR) algorithm and “AND” logic with acceleration and angular rate data can improve the high localization and altitude accuracy. It is a great support for the increasing 3D location demand in indoor cases for universal application with ordinary sensors.

Details

Sensor Review, vol. 35 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 6 November 2018

Kai Xiong and Liangdong Liu

The successful use of the standard extended Kalman filter (EKF) is restricted by the requirement on the statistics information of the measurement noise. The covariance of the…

Abstract

Purpose

The successful use of the standard extended Kalman filter (EKF) is restricted by the requirement on the statistics information of the measurement noise. The covariance of the measurement noise may deviate from its nominal value in practical environment, and the filtering performance may decline because of the statistical uncertainty. Although the adaptive EKF (AEKF) is available for recursive covariance estimation, it is often less accurate than the EKF with accurate noise statistics.

Design/methodology/approach

Aiming at this problem, this paper develops a parallel adaptive EKF (PAEKF) by combining the EKF and the AEKF with an adaptive law, such that the final state estimate is dominated by the EKF when the prior noise covariance is accurate, while the AEKF is activated when the actual noise covariance deviates from its nominal value.

Findings

The PAEKF can reduce the sensitivity of the algorithm to the model uncertainty and ensure the estimation accuracy in the normal case. The simulation results demonstrate that the PAEKF has the advantage of both the AEKF and the EKF.

Practical implications

The presented algorithm is applicable for spacecraft relative attitude and position estimation.

Originality/value

The PAEKF is presented for a kind of nonlinear uncertain systems. Stability analysis is provided to show that the error of the estimator is bounded under certain assumptions.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 11 November 2022

Gang Shi and Honglei Shang

Traditional algorithms require at least two complete vector observations to estimate orientation parameters. However, sensor faults and disturbances may cause some components of…

Abstract

Purpose

Traditional algorithms require at least two complete vector observations to estimate orientation parameters. However, sensor faults and disturbances may cause some components of vector observations unavailable. This paper aims to propose algorithms to realize orientation estimation using vector observations with one or two components lost.

Design/methodology/approach

The fundamental of the proposed method is using norm equation and dot product equation to estimate the lost components, then, using an improved TRIAD to calculate attitude matrix. Specific algorithms for one and two lost components cases are constructed respectively, and the nonuniqueness of orientation estimation is analyzed from a geometric point of view. At last, experiments are performed to test the proposed algorithms.

Findings

The loss of components results in the loss of orientation information. The introduction of the norm equation and dot product equation can partially compensate for the loss of information. Experiment results and analysis show that the proposed algorithms can provide effective orientation estimation, and in vast majority of applications, the proposed algorithms can provide a unique solution in one lost component case and double solutions in two lost components case.

Originality/value

The proposed method addresses the problem of orientation estimation when one or two components of vector observations are unavailable. The introduction of the norm equation and dot product equation makes the calculation cost low, while the analyses from a geometric point of view makes the study of nonuniqueness more intuitive.

Details

Sensor Review, vol. 42 no. 6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 23 March 2010

Jinjun Shan

The purpose of this paper is to develop a tri‐axis spacecraft simulator to simulate the three‐axis attitude motion of a satellite and for ground‐based hardware‐in‐the‐loop…

Abstract

Purpose

The purpose of this paper is to develop a tri‐axis spacecraft simulator to simulate the three‐axis attitude motion of a satellite and for ground‐based hardware‐in‐the‐loop simulation.

Design/methodology/approach

The structure of tri‐axis satellite attitude simulator is designed first. Full dynamic model is then derived. Based on the dynamic model, a simple proportional‐integral‐derivative controller is developed and applied to control the motion of simulator.

Findings

The effectiveness of the proposed simulator configuration has been verified through numerical simulations. The tri‐axis simulator can follow the satellite attitude motion precisely.

Originality/value

This paper is valuable for researchers working on the development of tri‐axis spacecraft attitude simulator. This work is original. The simulator configuration has been applied to a satellite mission that was launched successfully in 2006.

Details

Aircraft Engineering and Aerospace Technology, vol. 82 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 2 May 2017

Kai Xiong and Chunling Wei

This paper aims to present a multiple-model adaptive estimator (MMAE) to calibrate the star sensor low frequency error (LFE). The star sensor LFE, which is caused primarily by the…

Abstract

Purpose

This paper aims to present a multiple-model adaptive estimator (MMAE) to calibrate the star sensor low frequency error (LFE). The star sensor LFE, which is caused primarily by the periodic thermal distortion, has a great impact on spacecraft attitude determination accuracy.

Design/methodology/approach

The unfavorable effect of the LFE can be partly eliminated by using the calibration algorithm based on the augmented Kalman filter (AKF). However, the AKF may be worse than the traditional Kalman filter (KF) in the absence of the LFE. To cope with this problem, the MMAE is applied first time for combining the AKF and the KF in the spacecraft attitude determination system, such that satisfactory performance can be achieved in different operating scenarios.

Findings

The convergence of the presented MMAE is demonstrated through a formal derivation. A novel method is proposed to tune the MMAE design parameter, such that the convergence rate of the estimator is increased. It is shown via numerical studies that the presented algorithm outperforms the AKF and the KF.

Practical implications

The calibration algorithm is applicable for spacecraft attitude determination.

Originality/value

An effective star sensor LFE calibration algorithm based on the MMAE is developed. In addition, a novel method is proposed to increase convergence rate of the estimator.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 February 2020

Feng Cui, Dong Gao and Jianhua Zheng

The main reason for the low accuracy of magnetometer-based autonomous orbit determination is the coarse accuracy of the geomagnetic field model. Furthermore, the geomagnetic field…

Abstract

Purpose

The main reason for the low accuracy of magnetometer-based autonomous orbit determination is the coarse accuracy of the geomagnetic field model. Furthermore, the geomagnetic field model error increases obviously during geomagnetic storms, which can still further reduce the navigation accuracy. The purpose of this paper is to improve the accuracy of magnetometer-based autonomous orbit determination during geomagnetic storms.

Design/methodology/approach

In this paper, magnetometer-based autonomous orbit determination via a measurement differencing extended Kalman filter (MDEKF) is studied. The MDEKF algorithm can effectively remove the time-correlated portion of the measurement error and thus can evidently improve the accuracy of magnetometer-based autonomous orbit determination during geomagnetic storms. Real flight data from Swarm A are used to evaluate the performance of the MDEKF algorithm presented in this study. A performance comparison between the MDEKF algorithm and an extended Kalman filter (EKF) algorithm is investigated for different geomagnetic storms and sampling intervals.

Findings

The simulation results show that the MDEKF algorithm is superior to the EKF algorithm in terms of estimation accuracy and stability with a short sampling interval during geomagnetic storms. In addition, as the size of the geomagnetic storm increases, the advantages of the MDEKF algorithm over the EKF algorithm become more obvious.

Originality/value

The algorithm in this paper can improve the real-time accuracy of magnetometer-based autonomous orbit determination during geomagnetic storms with a low computational burden and is very suitable for low-orbit micro- and nano-satellites.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 2000