Search results

1 – 10 of over 4000
Article
Publication date: 15 June 2021

Mohd Badrul Salleh, Nurulasikin Mohd Suhadis and Renuganth Varatharajoo

This paper aims to investigate the attitude control pointing improvement for a small satellite with control moment gyroscopes (CMGs) using the active force control (AFC) method.

Abstract

Purpose

This paper aims to investigate the attitude control pointing improvement for a small satellite with control moment gyroscopes (CMGs) using the active force control (AFC) method.

Design/methodology/approach

The AFC method is developed with its governing equations and integrated into the conventional proportional-derivative (PD) controller of a closed-loop satellite attitude control system. Two numerical simulations of an identical attitude control mission namely the PD controller and the PD+AFC controller were carried out using the MATLAB®-SimulinkTM software and their attitude control performances were demonstrated accordingly.

Findings

Having the PD+AFC controller, the attitude maneuver can be completed within the desired slew rate, which is about 2.14 degree/s and the attitude pointing accuracies for the roll, pitch and yaw angles have improved significantly by more than 85% in comparison with the PD controller alone. Moreover, the implementation of the AFC into the conventional PD controller does not cause significant difference on the physical structure of the four single gimbal CMGs (4-SGCMGs).

Practical implications

To achieve a precise attitude pointing mission, the AFC method can be applied directly to the existing conventional PD attitude control system of a CMG-based satellite. In this case, the AFC is indeed the backbone for the satellite attitude performance improvement.

Originality/value

The present study demonstrates that the attitude pointing of a small satellite with CMGs is improved through the implementation of the AFC scheme into the PD controller.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 May 2022

Sohaib Aslam, Yew-Chung Chak, Mujtaba Hussain Jaffery and Renuganth Varatharajoo

The satellite pointing accuracy plays a crucial role in ensuring a successful satellite mission itself. Therefore, this paper aims to enhance the attitude pointing accuracy of the…

Abstract

Purpose

The satellite pointing accuracy plays a crucial role in ensuring a successful satellite mission itself. Therefore, this paper aims to enhance the attitude pointing accuracy of the combined energy and attitude control system (CEACS) in a satellite in the presence of external disturbance torques through a robust controller, which can produce high pointing accuracies with smaller control torques.

Design/methodology/approach

To improve the CEACS attitude pointing accuracy, a maiden fuzzy proportional derivative (PD)-based CEACS architecture is proposed. The mathematical models along with its numerical treatments of the fuzzy PD-based CEACS attitude control architecture are presented. In addition, a comparison between the PD and fuzzy PD controllers in terms of the CEACS pointing accuracies and control torques is provided.

Findings

Numerical results show that the fuzzy PD controller produces a considerable CEACS pointing accuracy improvement for a lower control torque compartment.

Practical implications

CEACS has gained a renew interest because of significant increase in the projected onboard power requirements for future space missions. Therefore, it is of paramount importance to improve the CEACS pointing accuracy itself with a minimum control torque compartment. In fact, this proposed fuzzy PD controller is shown to be a potential CEACS attitude controller.

Originality/value

The fuzzy PD-based CEACS architecture not only provides a better attitude pointing accuracy but also ensures a lower control torque compartment, which corresponds to a lower onboard power consumption.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 July 2009

Weiyue Chen and Wuxing Jing

The purpose of this paper is to investigate the problem of the initial attitude detumbling and acquisition for micro‐satellite using geomagnetism with the aid of the pitch…

Abstract

Purpose

The purpose of this paper is to investigate the problem of the initial attitude detumbling and acquisition for micro‐satellite using geomagnetism with the aid of the pitch momentum bias, and the application of the feedback linearization method, H and μ‐synthesize control theory in the robust attitude acquisition controller design.

Design/methodology/approach

The pitch flywheels establish the momentum bias state in the beginning of the detumbling stage and keep the momentum bias state thereafter. The geomagnetic change rate feedback detumbling controller is used to detumble the micro‐satellite and the gyroscope rigidity is utilized to capture orbital negative normal orientation in the detumbling and attitude acquisition phase. Feedback linearization method is adopted to obtain the linear attitude dynamics. Based on the feedback linearization model, a quasi proportion differential (PD) controller is designed, meanwhile H and μ‐synthesis control theories are adopted to synthesis the robust attitude acquisition controllers.

Findings

The pitch momentum bias‐aided attitude detumbling and acquisition method make the capture of the orbital negative normal orientation faster and more accurate than the classical initial operation process. Quasi PD and H have greater robustness than the classical PD attitude acquisition controller in normal geomagnetic case; quasi PD and μ‐synthesis have greater robustness than the classical PD attitude acquisition controller in magnetic storm case.

Originality/value

Provides pitch momentum bias‐aided attitude detumbling and acquisition method for the micro‐satellite and the robust attitude acquisition controller design technology.

Details

Aircraft Engineering and Aerospace Technology, vol. 81 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 26 July 2021

Liang Zhang, Liang Jing, Liheng Ye and Xing Gao

This paper aims to investigate the problem of attitude control for a horizontal takeoff and horizontal landing reusable launch vehicle.

Abstract

Purpose

This paper aims to investigate the problem of attitude control for a horizontal takeoff and horizontal landing reusable launch vehicle.

Design/methodology/approach

In this paper, a predefined-time attitude tracking controller is presented for a horizontal takeoff and horizontal landing reusable launch vehicle (HTHLRLV). Firstly, the attitude tracking error dynamics model of the HTHLRLV is developed. Subsequently, a novel sliding mode surface is designed with predefined-time stability. Furthermore, by using the proposed sliding mode surface, a predefined-time controller is derived. To compensate the external disturbances or model uncertainties, a fixed-time disturbance observer is developed, and its convergence time can be defined as a prior control parameter. Finally, the stability of the proposed sliding mode surface and the controller can be proved by the Lyapunov theory.

Findings

In contrast to other fixed-time methods, this controller only requires three control parameters, and the convergence time can be predefined instead of being estimated. The simulation results also demonstrate the effectiveness of the proposed controller.

Originality/value

A novel predefined-time attitude tracking controller is developed based on the predefined-time sliding mode surface (SMS) and fixed-time disturbance observer (FxTDO). The convergence time of the system can be selected as a prior control parameter for SMS and FxTDO.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 January 2021

Navya Thirumaleshwar Hegde, V. I. George, C. Gurudas Nayak and Aldrin Claytus Vaz

This paper aims to provide a mathematical modeling and design of H-infinity controller for an autonomous vertical take-off and landing (VTOL) Quad Tiltrotor hybrid unmanned aerial…

Abstract

Purpose

This paper aims to provide a mathematical modeling and design of H-infinity controller for an autonomous vertical take-off and landing (VTOL) Quad Tiltrotor hybrid unmanned aerial vehicles (UAVs). The variation in the aerodynamics and model dynamics of these aerial vehicles due to its tilting rotors are the key issues and challenges, which attracts the attention of many researchers. They carry parametric uncertainties (such as non-linear friction force, backlash, etc.), which drives the designed controller based on the nominal model to instability or performance degradation. The controller needs to take these factors into consideration and still give good stability and performance. Hence, a robust H-infinity controller is proposed that can handle these uncertainties.

Design/methodology/approach

A unique VTOL Quad Tiltrotor hybrid UAV, which operates in three flight modes, is mathematically modeled using Newton–Euler equations of motion. The contribution of the model is its ability to combine high-speed level flight, VTOL and transition between these two phases. The transition involves the tilting of the proprotors from 90° to 0° and vice-versa in 15° intervals. A robust H-infinity control strategy is proposed, evaluated and analyzed through simulation to control the flight dynamics for different modes of operation.

Findings

The main contribution of this research is the mathematical modeling of three flight modes (vertical takeoff–forward, transition–cruise-back, transition-vertical landing) of operation by controlling the revolutions per minute and tilt angles, which are independent of each other. An autonomous flight control system using a robust H-infinity controller to stabilize the mode of transition is designed for the Quad Tiltrotor UAV in the presence of uncertainties, noise and disturbances using MATLAB/SIMULINK. This paper focused on improving the disturbance rejection properties of the proposed UAV by designing a robust H-infinity controller for position and orientation trajectory regulation in the presence of uncertainty. The simulation results show that the Tiltrotor achieves transition successfully with disturbances, noise and uncertainties being present.

Originality/value

A novel VTOL Quad Tiltrotor UAV mathematical model is developed with a special tilting rotor mechanism, which combines both aircraft and helicopter flight modes with the transition taking place in between phases using robust H-infinity controller for attitude, altitude and trajectory regulation in the presence of uncertainty.

Details

International Journal of Intelligent Unmanned Systems, vol. 9 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 5 October 2022

Brajesh Kumar Singh and Awadhesh Kumar

The rotorcraft technology is very interesting area since last few decades due to variety of applications. One of the rotorcrafts is the quadrotor unmanned aerial vehicle (QUAV)…

Abstract

Purpose

The rotorcraft technology is very interesting area since last few decades due to variety of applications. One of the rotorcrafts is the quadrotor unmanned aerial vehicle (QUAV), which contains four rotors mounted on an airframe with an onboard controller. The QUAV is a highly nonlinear system and underactuated. Its controller design is very challenging task, and the need of controller is to make it autonomous based on mission planning. The purpose of this study is to design a controller for quadrotor UAV for attitude stabilization and trajectory tracking problem in presence of external environmental disturbances such as wind gust.

Design/methodology/approach

To address this problem, the model predictive control has been designed for attitude control and feedback linearization control for the position control using the linear parameter varying (LPV) approach. The trajectory tracking problem has been addressed using the circular trajectory and helical trajectory.

Findings

The simulation results show the efficient performance with good trajectory tracking even in presence of external disturbances in both the scenarios considered, one for circular trajectory tracking and other for helical trajectory tracking.

Originality/value

The novelty of the work came from using the LPV approach in controller design, which increases the robustness of the controller in presence of external disturbances.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 4 November 2021

Vinoth Kumar Annamalai and Selvakumaran Thunaipragasam

The purpose of this study is to design a flight control model for a control surface-less (CSL) tri-tilt-rotor (TTR) unmanned aerial vehicle (UAV) based on a Proportional Integral…

Abstract

Purpose

The purpose of this study is to design a flight control model for a control surface-less (CSL) tri-tilt-rotor (TTR) unmanned aerial vehicle (UAV) based on a Proportional Integral Derivative (PID) controller to stabilize the altitude and attitude of the UAV subjected to various flying conditions.

Design/methodology/approach

First, the proposed UAV with a tilting mechanism is designed and analyzed to obtain the aerodynamic parameters. Second, the dynamics of the proposed UAV are mathematically modeled using Newton-Euler formation. Then, the PID controller is implemented in the simulation model to control flight maneuvers. The model parameters were implemented in a mathematical model to find the system’s stability for various flight conditions. The model was linearized to determine the PID gain values for vertical take-off and landing, cruise and transition mode. The PID controller was tuned to obtain the desired altitude and attitude in a short period. The tuned PID gain values were implemented in the PID controller and the model was simulated.

Findings

The main contribution of this study is the mathematical model and controller for a UAV without any control surface and uses only a thrust vector control mechanism which reduces the complexity of the controller. The simulation has been carried out for various flight conditions. The altitude PID controller and the attitude PID controller for CSL-TTR-UAV were tuned to obtain desired altitude and attitude within the optimum duration of 4 s and deviation in the attitude of 8%, which is within the allowable limit of 14%. The findings obtained from the simulation revels that the altitude and attitude control of the CSL-TTR-UAV was achieved by controlling the rpm of the rotor and tilt angle using the PID controller.

Originality/value

A novel CSL TTR UAV mathematical model is developed with a dual tilting mechanism for a tail rotor and single axis tilt for the rotors in the wing. The flight control model controls the UAV without a control surface using a PID controller for the thrust vector mechanism.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 31 August 2012

Yueyong Lv, Qinglei Hu, Guangfu Ma and Jian Zhang

The purpose of this paper is to propose a decentralized output feedback controller for cooperative attitude regulation of spacecraft formation in absence of angular velocity…

Abstract

Purpose

The purpose of this paper is to propose a decentralized output feedback controller for cooperative attitude regulation of spacecraft formation in absence of angular velocity feedback.

Design/methodology/approach

The nonlinear relative attitude dynamic and kinematic equations represented by relative quaternion and relative angular velocity, respectively, are considered in this paper. The lead filter is employed to synthesize virtual angular velocity signal so that the design of output feedback controller is achieved. Lyapunov method is adopted to prove the stability of closed‐loop system. Considering the external disturbance, the theory of L2‐gain disturbance attenuation is employed to improve the designed controller. Numerical simulations are carried out to verify the controllers proposed.

Findings

It is found that the closed‐loop system can be guaranteed asymptotically stable in absence of external disturbance. When disturbance is considered, as long as the sufficient condition proposed is satisfied, the improved controller can render system uniformly ultimately bounded stable.

Practical implications

The proposed output feedback control scheme can be considered as a fall‐back alternative for the case that the angular velocity sensors fail, or seen as another option for the system without angular velocity sensors at all.

Originality/value

Unlike most classical works in the field of output feedback which focus on centralized scheme and neglect the disturbance, the controller proposed in this paper is able to handle the output feedback control problem of multi‐agent formation in a decentralized fashion, so as to avoid the single failure point of a centralized scheme. Meanwhile, the capability of L2‐gain disturbance attenuation is also achieved simultaneously.

Details

Aircraft Engineering and Aerospace Technology, vol. 84 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 30 August 2013

Jiangtao Xu, Hui Qi, Weidong Chen and Xiande Wu

The purpose of this paper is to develop an attitude control strategy for the reusable boosted vehicle with large angle of attack, and to remove the cross coupling among roll…

Abstract

Purpose

The purpose of this paper is to develop an attitude control strategy for the reusable boosted vehicle with large angle of attack, and to remove the cross coupling among roll, pitch and yaw channels.

Design/methodology/approach

The coordinated gain scheduling control strategy consists mainly of two parts. First, initially ignoring dynamic coupling, single channel gain scheduling controller is designed based on linearized models, respectively. Second, with respect to main channel gain scheduling controller, coordinated scheduling controller is used to generate intentionally cross coupling to partly cancel inter‐channel cross coupling of reusable boosted vehicle.

Findings

A coordinated gain scheduling control strategy is presented, and no such analytical solution can be found for the reusable boosted vehicle.

Practical implications

The design idea of coordinated gain scheduling strategy is straightforward in physical concepts and has great value for engineering applications.

Originality/value

Coordinated gain scheduling control strategy is novel in that single channel gain scheduling design does not involve small perturbation linearization and coordinated channel is scheduled.

Details

Aircraft Engineering and Aerospace Technology, vol. 85 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 2 January 2018

Yong Guo, Shen-Min Song and Xue-Hui Li

This paper aims to investigate the problem of finite-time consensus tracking control without unwinding for formation flying spacecraft in the presence of external disturbances.

Abstract

Purpose

This paper aims to investigate the problem of finite-time consensus tracking control without unwinding for formation flying spacecraft in the presence of external disturbances.

Design/methodology/approach

Two distributed finite-time controllers are developed using the backstepping sliding mode. The first robust controller can compensate for external disturbances with known bounds, and the second one can compensate for external disturbances with unknown bounds.

Findings

Because the controllers are designed on the basis of rotation matrix, which represents the set of attitudes both globally and uniquely, the system can overcome the drawback of unwinding, which results in extra fuel consumption. Through introducing a novel virtual angular velocity, exchange of control signals between neighboring spacecraft becomes unnecessary, and it is able to reduce the communication burden.

Practical implications

The two robust controllers can deal with unwinding that may result in fuel consumption by traveling a long distance before returning to a desired attitude when the closed-loop system is close to the desired attitude equilibrium.

Originality/value

Two finite-time controllers without unwinding are proposed for formation flying spacecraft by using backstepping sliding mode. Furthermore, exchange of control signals between neighboring spacecraft is unnecessary.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 4000