Search results

1 – 10 of over 26000
Book part
Publication date: 21 June 2014

Peter Phillips

This chapter explains how economic analysis can contribute to the delineation of the lone wolf’s opportunities and choices in a manner that allows operationally relevant advice to…

Abstract

Purpose

This chapter explains how economic analysis can contribute to the delineation of the lone wolf’s opportunities and choices in a manner that allows operationally relevant advice to be contributed to the investigative process.

Approach

Using a risk-reward analytical framework we examine the lone wolf’s attack method opportunities and choices and identify those attack methods that would be chosen by lone wolves with different levels of risk aversion. We also use prospect theory as an alternative methodology for the determination of the lone wolf’s preference orderings over the available attack methods in a context where he references his actions against those of a predecessor whom he wishes to emulate.

Findings

We find that lone wolf terrorists with different levels of risk aversion can be expected to choose different attack methods or combinations of attack methods. More risk averse lone wolf terrorists will choose attack methods such as assassination. Less risk averse lone wolf terrorists will choose attack methods such as bombing, hostage-taking and unconventional attacks. Also, we find that lone wolf terrorists who reference their actions against ‘predecessor’ lone wolf terrorists will choose differently from among the available attack methods depending on which predecessor lone wolf is being referenced.

Limitations

The analysis provides two different perspectives on terrorist choice but by no means exhausts the analytical alternatives. The analysis focuses on the fatalities and injuries inflicted whereas other perspectives might include different ‘payoffs’ series, including news or media coverage.

Originality

The chapter contributes an analysis of the order in which lone wolf terrorists with particular characteristics will choose from a set of available attack methods. During the course of our discussion we point out the consistency between the ‘rise’ of the lone wolf terrorist and the diseconomies to scale that are evident within the terrorism context. This presents the opportunity for new debates.

Open Access
Article
Publication date: 10 July 2023

Yong Ding, Peixiong Huang, Hai Liang, Fang Yuan and Huiyong Wang

Recently, deep learning (DL) has been widely applied in various aspects of human endeavors. However, studies have shown that DL models may also be a primary cause of data leakage…

Abstract

Purpose

Recently, deep learning (DL) has been widely applied in various aspects of human endeavors. However, studies have shown that DL models may also be a primary cause of data leakage, which raises new data privacy concerns. Membership inference attacks (MIAs) are prominent threats to user privacy from DL model training data, as attackers investigate whether specific data samples exist in the training data of a target model. Therefore, the aim of this study is to develop a method for defending against MIAs and protecting data privacy.

Design/methodology/approach

One possible solution is to propose an MIA defense method that involves adjusting the model’s output by mapping the output to a distribution with equal probability density. This approach effectively preserves the accuracy of classification predictions while simultaneously preventing attackers from identifying the training data.

Findings

Experiments demonstrate that the proposed defense method is effective in reducing the classification accuracy of MIAs to below 50%. Because MIAs are viewed as a binary classification model, the proposed method effectively prevents privacy leakage and improves data privacy protection.

Research limitations/implications

The method is only designed to defend against MIA in black-box classification models.

Originality/value

The proposed MIA defense method is effective and has a low cost. Therefore, the method enables us to protect data privacy without incurring significant additional expenses.

Details

International Journal of Web Information Systems, vol. 19 no. 2
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 16 June 2021

Umesh K. Raut and L.K. Vishwamitra

Software-define vehicular networks (SDVN) assure the direct programmability for controlling the vehicles with improved accuracy and flexibility. In this research, the resource…

107

Abstract

Purpose

Software-define vehicular networks (SDVN) assure the direct programmability for controlling the vehicles with improved accuracy and flexibility. In this research, the resource allocation strategy is focused on which the seek-and-destroy algorithm is implemented in the controller in such a way that an effective allocation of the resources is done based on the multi-objective function.

Design/methodology/approach

The purpose of this study is focuses on the resource allocation algorithm for the SDVN with the security analysis to analyse the effect of the attacks in the network. The genuine nodes in the network are granted access to the communication in the network, for which the factors such as trust, throughput, delay and packet delivery ratio are used and the algorithm used is Seek-and-Destroy optimization. Moreover, the optimal resource allocation is done using the same optimization in such a way that the network lifetime is extended.

Findings

The security analysis is undergoing in the research using the simulation of the attackers such as selective forwarding attacks, replay attacks, Sybil attacks and wormhole attacks that reveal that the replay attacks and the Sybil attacks are dangerous attacks and in future, there is a requirement for the security model, which ensures the protection against these attacks such that the network lifetime is extended for a prolonged communication. The achievement of the proposed method in the absence of the attacks is 84.8513% for the remaining nodal energy, 95.0535% for packet delivery ratio (PDR), 279.258 ms for transmission delay and 28.9572 kbps for throughput.

Originality/value

The seek-and-destroy algorithm is one of the swarm intelligence-based optimization designed based on the characteristics of the scroungers and defenders, which is completely novel in the area of optimizations. The diversification and intensification of the algorithm are perfectly balanced, leading to good convergence rates.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 26 January 2024

Merly Thomas and Meshram B.B.

Denial-of-service (DoS) attacks develop unauthorized entry to various network services and user information by building traffic that creates multiple requests simultaneously…

Abstract

Purpose

Denial-of-service (DoS) attacks develop unauthorized entry to various network services and user information by building traffic that creates multiple requests simultaneously making the system unavailable to users. Protection of internet services requires effective DoS attack detection to keep an eye on traffic passing across protected networks, freeing the protected internet servers from surveillance threats and ensuring they can focus on offering high-quality services with the fewest response times possible.

Design/methodology/approach

This paper aims to develop a hybrid optimization-based deep learning model to precisely detect DoS attacks.

Findings

The designed Aquila deer hunting optimization-enabled deep belief network technique achieved improved performance with an accuracy of 92.8%, a true positive rate of 92.8% and a true negative rate of 93.6.

Originality/value

The introduced detection approach effectively detects DoS attacks available on the internet.

Details

International Journal of Web Information Systems, vol. 20 no. 1
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 14 September 2022

Mythili Boopathi, Meena Chavan, Jeneetha Jebanazer J. and Sanjay Nakharu Prasad Kumar

The Denial of Service (DoS) attack is a category of intrusion that devours various services and resources of the organization by the dispersal of unusable traffic, so that…

Abstract

Purpose

The Denial of Service (DoS) attack is a category of intrusion that devours various services and resources of the organization by the dispersal of unusable traffic, so that reliable users are not capable of getting benefit from the services. In general, the DoS attackers preserve their independence by collaborating several victim machines and following authentic network traffic, which makes it more complex to detect the attack. Thus, these issues and demerits faced by existing DoS attack recognition schemes in cloud are specified as a major challenge to inventing a new attack recognition method.

Design/methodology/approach

This paper aims to detect DoS attack detection scheme, termed as sine cosine anti coronavirus optimization (SCACVO)-driven deep maxout network (DMN). The recorded log file is considered in this method for the attack detection process. Significant features are chosen based on Pearson correlation in the feature selection phase. The over sampling scheme is applied in the data augmentation phase, and then the attack detection is done using DMN. The DMN is trained by the SCACVO algorithm, which is formed by combining sine cosine optimization and anti-corona virus optimization techniques.

Findings

The SCACVO-based DMN offers maximum testing accuracy, true positive rate and true negative rate of 0.9412, 0.9541 and 0.9178, respectively.

Originality/value

The DoS attack detection using the proposed model is accurate and improves the effectiveness of the detection.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 5
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 3 June 2021

Mohandas V. Pawar and Anuradha J.

This study aims to present a novel system for detection and prevention of black hole and wormhole attacks in wireless sensor network (WSN) based on deep learning model. Here…

Abstract

Purpose

This study aims to present a novel system for detection and prevention of black hole and wormhole attacks in wireless sensor network (WSN) based on deep learning model. Here, different phases are included such as assigning the nodes, data collection, detecting black hole and wormhole attacks and preventing black hole and wormhole attacks by optimal path communication. Initially, a set of nodes is assumed for carrying out the communication in WSN. Further, the black hole attacks are detected by the Bait process, and wormhole attacks are detected by the round trip time (RTT) validation process. The data collection procedure is done with the Bait and RTT validation process with attribute information. The gathered data attributes are given for the training in which long short-term memory (LSTM) is used that includes the attack details. This is used for attack detection process. Once they are detected, those attacks are removed from the network using the optimal path selection process. Here, the optimal shortest path is determined by the improvement in the whale optimization algorithm (WOA) that is called as fitness rate-based whale optimization algorithm (FR-WOA). This shortest path communication is carried out based on the multi-objective function using energy, distance, delay and packet delivery ratio as constraints.

Design/methodology/approach

This paper implements a detection and prevention of attacks model based on FR-WOA algorithm for the prevention of attacks in the WSNs. With this, this paper aims to accomplish the desired optimization of multi-objective functions.

Findings

From the analysis, it is found that the accuracy of the optimized LSTM is better than conventional LSTM. The energy consumption of the proposed FR-WOA with 35 nodes is 7.14% superior to WOA and FireFly, 5.7% superior to grey wolf optimization and 10.3% superior to particle swarm optimization.

Originality/value

This paper develops the FR-WOA with optimized LSTM detecting and preventing black hole and wormhole attacks from WSN. To the best of the authors’ knowledge, this is the first work that uses FR-WOA with optimized LSTM detecting and preventing black hole and wormhole attacks from WSN.

Article
Publication date: 10 April 2017

Raman Singh, Harish Kumar, Ravinder Kumar Singla and Ramachandran Ramkumar Ketti

The paper addresses various cyber threats and their effects on the internet. A review of the literature on intrusion detection systems (IDSs) as a means of mitigating internet…

2462

Abstract

Purpose

The paper addresses various cyber threats and their effects on the internet. A review of the literature on intrusion detection systems (IDSs) as a means of mitigating internet attacks is presented, and gaps in the research are identified. The purpose of this paper is to identify the limitations of the current research and presents future directions for intrusion/malware detection research.

Design/methodology/approach

The paper presents a review of the research literature on IDSs, prior to identifying research gaps and limitations and suggesting future directions.

Findings

The popularity of the internet makes it vulnerable against various cyber-attacks. Ongoing research on intrusion detection methods aims to overcome the limitations of earlier approaches to internet security. However, findings from the literature review indicate a number of different limitations of existing techniques: poor accuracy, high detection time, and low flexibility in detecting zero-day attacks.

Originality/value

This paper provides a review of major issues in intrusion detection approaches. On the basis of a systematic and detailed review of the literature, various research limitations are discovered. Clear and concise directions for future research are provided.

Details

Online Information Review, vol. 41 no. 2
Type: Research Article
ISSN: 1468-4527

Keywords

Article
Publication date: 9 April 2024

Ahmed Shehata and Metwaly Eldakar

Social engineering is crucial in today’s digital landscape. As technology advances, malicious individuals exploit human judgment and trust. This study explores how age, education…

Abstract

Purpose

Social engineering is crucial in today’s digital landscape. As technology advances, malicious individuals exploit human judgment and trust. This study explores how age, education and occupation affect individuals’ awareness, skills and perceptions of social engineering.

Design/methodology/approach

A quantitative research approach was used to survey a diverse demographic of Egyptian society. The survey was conducted in February 2023, and the participants were sourced from various Egyptian social media pages covering different topics. The collected data was analyzed using descriptive and inferential statistics, including independent samples t-test and ANOVA, to compare awareness and skills across different groups.

Findings

The study revealed that younger individuals and those with higher education tend to research social engineering more frequently. Males display a higher level of awareness but score lower in terms of social and psychological consequences as well as types of attacks when compared to females. The type of attack cannot be predicted based on age. Higher education is linked to greater awareness and ability to defend against attacks. Different occupations have varying levels of awareness, skills, and psychosocial consequences. The study emphasizes the importance of increasing awareness, education and implementing cybersecurity measures.

Originality/value

This study’s originality lies in its focus on diverse Egyptian demographics, innovative recruitment via social media, comprehensive exploration of variables, statistical rigor, practical insights for cybersecurity education and diversity in educational and occupational backgrounds.

Details

Library Hi Tech, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 9 February 2022

Abel Yeboah-Ofori, Cameron Swart, Francisca Afua Opoku-Boateng and Shareeful Islam

Cyber resilience in cyber supply chain (CSC) systems security has become inevitable as attacks, risks and vulnerabilities increase in real-time critical infrastructure systems…

Abstract

Purpose

Cyber resilience in cyber supply chain (CSC) systems security has become inevitable as attacks, risks and vulnerabilities increase in real-time critical infrastructure systems with little time for system failures. Cyber resilience approaches ensure the ability of a supply chain system to prepare, absorb, recover and adapt to adverse effects in the complex CPS environment. However, threats within the CSC context can pose a severe disruption to the overall business continuity. The paper aims to use machine learning (ML) techniques to predict threats on cyber supply chain systems, improve cyber resilience that focuses on critical assets and reduce the attack surface.

Design/methodology/approach

The approach follows two main cyber resilience design principles that focus on common critical assets and reduce the attack surface for this purpose. ML techniques are applied to various classification algorithms to learn a dataset for performance accuracies and threats predictions based on the CSC resilience design principles. The critical assets include Cyber Digital, Cyber Physical and physical elements. We consider Logistic Regression, Decision Tree, Naïve Bayes and Random Forest classification algorithms in a Majority Voting to predicate the results. Finally, we mapped the threats with known attacks for inferences to improve resilience on the critical assets.

Findings

The paper contributes to CSC system resilience based on the understanding and prediction of the threats. The result shows a 70% performance accuracy for the threat prediction with cyber resilience design principles that focus on critical assets and controls and reduce the threat.

Research limitations/implications

Therefore, there is a need to understand and predicate the threat so that appropriate control actions can ensure system resilience. However, due to the invincibility and dynamic nature of cyber attacks, there are limited controls and attributions. This poses serious implications for cyber supply chain systems and its cascading impacts.

Practical implications

ML techniques are used on a dataset to analyse and predict the threats based on the CSC resilience design principles.

Social implications

There are no social implications rather it has serious implications for organizations and third-party vendors.

Originality/value

The originality of the paper lies in the fact that cyber resilience design principles that focus on common critical assets are used including Cyber Digital, Cyber Physical and physical elements to determine the attack surface. ML techniques are applied to various classification algorithms to learn a dataset for performance accuracies and threats predictions based on the CSC resilience design principles to reduce the attack surface for this purpose.

Details

Continuity & Resilience Review, vol. 4 no. 1
Type: Research Article
ISSN: 2516-7502

Keywords

Article
Publication date: 9 November 2015

Teodor Sommestad and Fredrik Sandström

The purpose of this paper is to test the practical utility of attack graph analysis. Attack graphs have been proposed as a viable solution to many problems in computer network…

Abstract

Purpose

The purpose of this paper is to test the practical utility of attack graph analysis. Attack graphs have been proposed as a viable solution to many problems in computer network security management. After individual vulnerabilities are identified with a vulnerability scanner, an attack graph can relate the individual vulnerabilities to the possibility of an attack and subsequently analyze and predict which privileges attackers could obtain through multi-step attacks (in which multiple vulnerabilities are exploited in sequence).

Design/methodology/approach

The attack graph tool, MulVAL, was fed information from the vulnerability scanner Nexpose and network topology information from 8 fictitious organizations containing 199 machines. Two teams of attackers attempted to infiltrate these networks over the course of two days and reported which machines they compromised and which attack paths they attempted to use. Their reports are compared to the predictions of the attack graph analysis.

Findings

The prediction accuracy of the attack graph analysis was poor. Attackers were more than three times likely to compromise a host predicted as impossible to compromise compared to a host that was predicted as possible to compromise. Furthermore, 29 per cent of the hosts predicted as impossible to compromise were compromised during the two days. The inaccuracy of the vulnerability scanner and MulVAL’s interpretation of vulnerability information are primary reasons for the poor prediction accuracy.

Originality/value

Although considerable research contributions have been made to the development of attack graphs, and several analysis methods have been proposed using attack graphs, the extant literature does not describe any tests of their accuracy under realistic conditions.

Details

Information & Computer Security, vol. 23 no. 5
Type: Research Article
ISSN: 2056-4961

Keywords

1 – 10 of over 26000