Search results

1 – 9 of 9
Open Access
Article
Publication date: 17 July 2023

Kanza Abid, Zafar Iqbal Shams, Muhammad Suleman Tahir and Arif Zubair

The presence of heavy metals in milk causes many acute and chronic physiological dysfunctions in human organs. The present study aims to investigate the heavy metals in cow's and…

1038

Abstract

Purpose

The presence of heavy metals in milk causes many acute and chronic physiological dysfunctions in human organs. The present study aims to investigate the heavy metals in cow's and buffalo's milk of two major cities, Karachi and Gujranwala, Pakistan to estimate metal intake by humans from this source.

Design/methodology/approach

In total, 48 milk samples from 2 cities were drawn from animals' udder to avoid contamination. Each sample was digested with nitric acid at 105 oC (degree Celsius) on a pre-heated electric hot plate to investigate the metals by atomic absorption spectroscopy (flame type). Air-acetylene technique analyzed chromium, cadmium and lead, and the hydride method analyzed arsenic in the milk samples.

Findings

The results revealed the highest mean lead concentration (19.65 ± 43.86 ppb) in the milk samples, followed by chromium (2.10 ± 2.33 ppb) and arsenic (0.48 ± 0.73 ppb). Cadmium was not detected in any sample, assuming cadmium's occurrence was below the detection level. The concentrations of all the metals in the samples of the two cities do not differ statistically. Lead concentrations in the buffalo's milk were higher than in cow's milk (p < 0.05). However, the concentrations of arsenic and chromium between buffalo's and cow's milk do not differ statistically. The present study reveals a lower level of metals in the milk than those conducted elsewhere. The mean concentrations of all the metals met the World Health Organization's (WHO) safety guidelines (1993).

Research limitations/implications

Although cadmium causes toxicity in the human body, cadmium could not be measured because cadmium's concentration was below the detection level, which is 1 ppb.

Practical implications

This study will help reduce the toxic metals in our environment, and the sources of heavy metals, particularly from the industrial sector could be identified. The feed and water consumed by the milking animals could be carefully used for feeding them.

Social implications

This study will help reduce the diseases and malfunction of human organs and organ systems since these heavy metals cause toxicity and carcinogenicity in humans. Arsenic and chromium cause cancer while lead causes encephalopathy (a brain disease).

Originality/value

The study reports heavy metal concentrations in the two attributes of four independent variables of raw milk samples that were scarcely reported from Pakistan.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Content available
Article
Publication date: 1 June 1998

34

Abstract

Details

Pigment & Resin Technology, vol. 27 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 30 March 2022

Deirdre Hogan and Joanne O'Flaherty

Goal 4.7 of the Sustainable Development Goals (SDGs) explicitly frames education as an enabler of change and a means to achieve all SDGs. This study aims to explore the nature and…

2639

Abstract

Purpose

Goal 4.7 of the Sustainable Development Goals (SDGs) explicitly frames education as an enabler of change and a means to achieve all SDGs. This study aims to explore the nature and culture of science as an academic discipline and its capacity for the integration of education for sustainable development (ESD).

Design/methodology/approach

Drawing upon interviews with academics working in a Life Sciences Department (n = 11), focus groups with students (n = 21) and observations from lectures, laboratory sessions and field trips, the study advances a number of recommendations for the integration of ESD in Science Education programs.

Findings

Findings point to the nature and structure of scientific knowledge and the culture of science as articulated by study participants. The study provides a number of recommendations for the integration of ESD in Science Education programs including a greater emphasis on inquiry-based learning, enhancing ESD themes in science-related modules to teach for sustainability and adopting a department wide strategy that promotes ESD.

Originality/value

This study argues that ESD practitioners need to be cognizant of the nature and culture of the discipline area – as a particular discipline propagates a specific culture – encapsulating ways of being, thinking, acting and communicating, which can have implications for the integration of ESD.

Details

International Journal of Sustainability in Higher Education, vol. 23 no. 8
Type: Research Article
ISSN: 1467-6370

Keywords

Open Access
Book part
Publication date: 4 May 2018

Suhendrayatna, Muhammad Zaki, Annisa Delima Habdani Harahap and Fitriani Verantika

Purpose – In this study, the possibility of the application of rice husks for adsorbing Mn(II) ion in the water phase has been studied.Design/Methodology/Approach – Experimental…

Abstract

Purpose – In this study, the possibility of the application of rice husks for adsorbing Mn(II) ion in the water phase has been studied.

Design/Methodology/Approach – Experimental studies have been initiated by preparing activated carbon from rice husks. The activation of rice husks was done using both physical and chemical treatment methods through heating at 110 °C and washing with citric acid activator at 0.2 M, 0.4 M, and 0.6 M. The adsorption tests were conducted as two part tests: preliminary and primary. The preliminary test was conducted to choose the best condition of four independent variables, i.e., contact time (0–120 minutes), activator concentrations (0.2, 0.4, and 0.6 M), initial Mn(II) concentrations (10, 20, 50, 100, 200, and 400 mg/L), and adsorption temperatures (30, 47, and 67 °C).

Findings – By identifying the substituted groups using Fourier Transform Infrared Spectroscopy after activation with citric acid, it was found that the highest transmittance percentage was present in activated carbon with 0.2 M of citric acid. The best adsorption capacity and efficiency was 13.87 mg/g and 79.60%, respectively, which were obtained at 200 mg/L initial concentration with a 0.2 M citric acid concentration for 120 min contact time at 47 °C. These results lead to a conclusion that rice husks after activation with citric acid can be applied as an adsorbent for Mn(II) adsorption in the water phase.

Research Limitations/Implications – The activated carbon produced was only applicable for the adsorption of Mn(II) ions from the water phase, but not applicable for the adsorption of other heavy metals ions.

Practical Implications – Rice husks were potentially prepared as an adsorbent for Mn(II) ion adsorption in the water phase that was low cost, environmental friendly, and easy to prepare.

Originality/Value – Activated carbon prepared from biomass was mostly carried out using acids at high concentrations while the study was conducted using weak acids (citric acid) at low concentrations.

Details

Proceedings of MICoMS 2017
Type: Book
ISBN:

Keywords

Open Access
Article
Publication date: 16 April 2020

Chia-Jui Hsu, Jenifer Barrirero, Rolf Merz, Andreas Stratmann, Hisham Aboulfadl, Georg Jacobs, Michael Kopnarski, Frank Mücklich and Carsten Gachot

To decrease wear and friction, zinc dialkyldithiophosphate (ZDDP) has been used in engine oil for several decades, but the mechanism of the tribofilm formation is still unclear…

1662

Abstract

Purpose

To decrease wear and friction, zinc dialkyldithiophosphate (ZDDP) has been used in engine oil for several decades, but the mechanism of the tribofilm formation is still unclear. The purpose of this study is to characterize the chemical details of the tribofilm by using high-resolution approaching.

Design/methodology/approach

An ISO VG 100 mineral oil mixed with ZDDP was used in sliding tests on cylindrical roller bearings. Tribofilm formation was observed after 2 h of the sliding test. X-ray photoelectron spectroscopy (XPS) and atom probe tomography (APT) were used for chemical analysis of the tribofilm.

Findings

The results show that the ZDDP tribofilm consists of the common ZDDP elements along with iron oxides. A considerable amount of zinc and a small amount of sulfur were observed. In particular, an oxide interlayer with sulfur enrichment was revealed by APT between the tribofilm and the steel substrate. The depth profile of the chemical composition was obtained, and a tribofilm of approximately 40 nm thickness was identified by XPS.

Originality/value

A sulfur enrichment at the interface is observed by APT, which is beneath an oxygen enrichment. The clear evidence of the S interlayer confirms the hard and soft acids and bases principle.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2020-0035/

Details

Industrial Lubrication and Tribology, vol. 72 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 24 August 2023

Chiara Bertolin and Filippo Berto

This article introduces the Special Issue on Sustainable Management of Heritage Buildings in long-term perspective.

Abstract

Purpose

This article introduces the Special Issue on Sustainable Management of Heritage Buildings in long-term perspective.

Design/methodology/approach

It starts by reviewing the gaps in knowledge and practice which led to the creation and implementation of the research project SyMBoL—Sustainable Management of Heritage Buildings in long-term perspective funded by the Norwegian Research Council over the 2018–2022 period. The SyMBoL project is the motivation at the base of this special issue.

Findings

The editorial paper briefly presents the main outcomes of SyMBoL. It then reviews the contributions to the Special Issue, focussing on the connection or differentiation with SyMBoL and on multidisciplinary findings that address some of the initial referred gaps.

Originality/value

The article shortly summarizes topics related to sustainable preservation of heritage buildings in time of reduced resources, energy crisis and impacts of natural hazards and global warming. Finally, it highlights future research directions targeted to overcome, or partially mitigate, the above-mentioned challenges, for example, taking advantage of no sestructive techniques interoperability, heritage building information modelling and digital twin models, and machine learning and risk assessment algorithms.

Content available
Article
Publication date: 13 September 2011

500

Abstract

Details

Sensor Review, vol. 31 no. 4
Type: Research Article
ISSN: 0260-2288

Open Access
Article
Publication date: 6 September 2022

Agnieszka Chmielewska, Bartlomiej Adam Wysocki, Elżbieta Gadalińska, Eric MacDonald, Bogusława Adamczyk-Cieślak, David Dean and Wojciech Świeszkowski

The purpose of this paper is to investigate the effect of remelting each layer on the homogeneity of nickel-titanium (NiTi) parts fabricated from elemental nickel and titanium…

1301

Abstract

Purpose

The purpose of this paper is to investigate the effect of remelting each layer on the homogeneity of nickel-titanium (NiTi) parts fabricated from elemental nickel and titanium powders using laser powder bed fusion (LPBF). In addition, the influence of manufacturing parameters and different melting strategies, including multiple cycles of remelting, on printability and macro defects, such as pore and crack formation, have been investigated.

Design/methodology/approach

An LPBF process was used to manufacture NiTi alloy from elementally blended powders and was evaluated with the use of a remelting scanning strategy to improve the homogeneity of fabricated specimens. Furthermore, both single melt and up to two remeltings were used.

Findings

The results indicate that remelting can be beneficial for density improvement as well as chemical and phase composition homogenization. Backscattered electron mode in scanning electron microscope showed a reduction in the presence of unmixed Ni and Ti elemental powders in response to increasing the number of remelts. The microhardness values of NiTi parts for the different numbers of melts studied were similar and ranged from 487 to 495 HV. Nevertheless, it was observed that measurement error decreases as the number of remelts increases, suggesting an increase in chemical and phase composition homogeneity. However, X-ray diffraction analysis revealed the presence of multiple phases regardless of the number of melt runs.

Originality/value

For the first time, to the best of the authors’ knowledge, elementally blended NiTi powders were fabricated via LPBF using remelting scanning strategies.

Open Access
Article
Publication date: 13 September 2022

Modupeola Dada, Patricia Popoola, Ntombi Mathe, Sisa Pityana and Samson Adeosun

In this study, AlCoCrFeNi–Cu (Cu-based) and AlCoCrFeNi–Ti (Ti-based) high entropy alloys (HEAs) were fabricated using a direct blown powder technique via laser additive…

Abstract

Purpose

In this study, AlCoCrFeNi–Cu (Cu-based) and AlCoCrFeNi–Ti (Ti-based) high entropy alloys (HEAs) were fabricated using a direct blown powder technique via laser additive manufacturing on an A301 steel baseplate for aerospace applications. The purpose of this research is to investigate the electrical resistivity and oxidation behavior of the as-built copper (Cu)- and titanium (Ti)-based alloys and to understand the alloying effect, the HEAs core effects and the influence of laser parameters on the physical properties of the alloys.

Design/methodology/approach

The as-received AlCoCrFeNiCu and AlCoCrFeNiTi powders were used to fabricate HEA clads on an A301 steel baseplate preheated at 400°C using a 3 kW Rofin Sinar dY044 continuous-wave laser-deposition system fitted with a KUKA robotic arm. The deposits were sectioned using an electric cutting machine and prepared by standard metallographic methods to investigate the electrical and oxidation properties of the alloys.

Findings

The results showed that the laser power had the most influence on the physical properties of the alloys. The Ti-based alloy had better resistivity than the Cu-based alloy, whereas the Cu-based alloy had better oxidation residence than the Ti-based alloy which attributed to the compositional alloying effect (Cu, aluminum and nickel) and the orderliness of the lattice, which is significantly associated with the electron transportation; consequently, the more distorted the lattice, the easier the transportation of electrons and the better the properties of the HEAs.

Originality/value

It is evident from the studies that the composition of HEAs and the laser processing parameters are two significant factors that influence the physical properties of laser deposited HEAs for aerospace applications.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 9 of 9