Search results

1 – 10 of over 1000
Article
Publication date: 3 July 2023

M. Boyault Edouard, Jean Camille, Bernier Vincent and Aoussat Améziane

This paper aims to fulfil a need to identify assembly interfaces from existing products based on their Assembly Process Planning (APP). It proposes a tool to identify assembly…

Abstract

Purpose

This paper aims to fulfil a need to identify assembly interfaces from existing products based on their Assembly Process Planning (APP). It proposes a tool to identify assembly interfaces responsible for reused components integration. It is integrated into a design for mixed model final assembly line approach by focusing on the identification of assembly interfaces as a generic tool. It aims to answer the problem of interfaces’ identification from the APP.

Design/methodology/approach

A tool is developed to identify assembly interfaces responsible for reused component integration. It is based on the use of a rule-based algorithm that analyses an APP and then submits the results to prohibition lists to check their relevance. The tool is then tested using a case study. Finally, the resulting list is subjected to a visual validation step to validate whether the identified interface is a real interface.

Findings

The results of this study are a tool named ICARRE which identify assembly interfaces using three steps. The tool has been validated by a case study from the helicopter industry.

Research limitations/implications

As some interfaces are not contained in the same assembly operations and therefore, may not have been identified by the rule-based algorithm. More research should be done by testing and improving the algorithm with other case studies.

Practical implications

The paper includes implications for new product development teams to address the difficulties of integrating reused components into different products.

Originality/value

This paper presents a tool for identifying interfaces when sources of knowledge do not allow the use of current methods.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 21 August 2023

Zengxin Kang, Jing Cui and Zhongyi Chu

Accurate segmentation of artificial assembly action is the basis of autonomous industrial assembly robots. This paper aims to study the precise segmentation method of manual…

Abstract

Purpose

Accurate segmentation of artificial assembly action is the basis of autonomous industrial assembly robots. This paper aims to study the precise segmentation method of manual assembly action.

Design/methodology/approach

In this paper, a temporal-spatial-contact features segmentation system (TSCFSS) for manual assembly actions recognition and segmentation is proposed. The system consists of three stages: spatial features extraction, contact force features extraction and action segmentation in the temporal dimension. In the spatial features extraction stage, a vectors assembly graph (VAG) is proposed to precisely describe the motion state of the objects and relative position between objects in an RGB-D video frame. Then graph networks are used to extract the spatial features from the VAG. In the contact features extraction stage, a sliding window is used to cut contact force features between hands and tools/parts corresponding to the video frame. Finally, in the action segmentation stage, the spatial and contact features are concatenated as the input of temporal convolution networks for action recognition and segmentation. The experiments have been conducted on a new manual assembly data set containing RGB-D video and contact force.

Findings

In the experiments, the TSCFSS is used to recognize 11 kinds of assembly actions in demonstrations and outperforms the other comparative action identification methods.

Originality/value

A novel manual assembly actions precisely segmentation system, which fuses temporal features, spatial features and contact force features, has been proposed. The VAG, a symbolic knowledge representation for describing assembly scene state, is proposed, making action segmentation more convenient. A data set with RGB-D video and contact force is specifically tailored for researching manual assembly actions.

Details

Robotic Intelligence and Automation, vol. 43 no. 5
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 9 June 2023

Yuming Liu, Yong Zhao, Qingyuan Lin, Sheng Liu, Ende Ge and Wei Wang

This paper aims to propose a framework for optimizing the pose in the assembly process of the non-ideal parts considering the manufacturing deviations and contact deformations…

Abstract

Purpose

This paper aims to propose a framework for optimizing the pose in the assembly process of the non-ideal parts considering the manufacturing deviations and contact deformations. Furthermore, the accuracy of the method would be verified by comparing it with the other conventional methods for calculating the optimal assembly pose.

Design/methodology/approach

First, the surface morphology of the parts with manufacturing deviations would be modeled to obtain the skin model shapes that can characterize the specific geometric features of the part. The model can provide the basis for the subsequent contact deformation analysis. Second, the simulated non-nominal components are discretized into point cloud data, and the spatial position of the feature points is corrected. Furthermore, the evaluation index to measure the assembly quality has been established, which integrates the contact deformations and the spatial relationship of the non-nominal parts’ key feature points. Third, the improved particle swarm optimization (PSO) algorithm combined with the finite element method is applied to the process of solving the optimal pose of the assembly, and further deformation calculations are conducted based on interference detection. Finally, the feasibility of the optimal pose prediction method is verified by a case.

Findings

The proposed method has been well suited to solve the problem of the assembly process for the non-ideal parts with complex geometric deviations. It can obtain the reasonable assembly optimal pose considering the constraints of the surface morphological features and contact deformations. This paper has verified the effectiveness of the method with an example of the shaft-hole assembly.

Research limitations/implications

The method proposed in this paper has been well suited to the problem of the assembly process for the non-ideal parts with complex geometric deviations. It can obtain the reasonable assembly optimal pose considering the constraints of the surface morphological features and contact deformations. This paper has verified the method with an example of the shaft-hole assembly.

Originality/value

The different surface morphology influenced by manufacturing deviations will lead to the various contact behaviors of the mating surfaces. The assembly problem for the components with complex geometry is usually accompanied by deformation due to the loading during the contact process, which may further affect the accuracy of the assembly. Traditional approaches often use worst-case methods such as tolerance offsets to analyze and optimize the assembly pose. In this paper, it is able to characterize the specific parts in detail by introducing the skin model shapes represented with the point cloud data. The dynamic changes in the parts' contact during the fitting process are also considered. Using the PSO method that takes into account the contact deformations improve the accuracy by 60.7% over the original method that uses geometric alignment alone. Moreover, it can optimize the range control of the contact to the maximum extent to prevent excessive deformations.

Details

Robotic Intelligence and Automation, vol. 43 no. 3
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 11 July 2023

Chuyu Tang, Genliang Chen, Hao Wang and Yangfan Yu

Hull block assembly is a vital task in ship construction. It is necessary to obtain the actual poses of the assembly features to guide further block alignment. Traditional methods…

79

Abstract

Purpose

Hull block assembly is a vital task in ship construction. It is necessary to obtain the actual poses of the assembly features to guide further block alignment. Traditional methods use single-point measurement, which is time-consuming and may lead to loss of key information. Thus, large-scale scanning is introduced for data acquisition, and this paper aims to provide a precise and robust method for retrieving poses based on point set registration.

Design/methodology/approach

The main problem of point registration is to find the correct transformation between the model and the scene. In this paper, a vote framework based on a new point pair feature is used to calculate the transformation. First, a special edge indicator for multiplate objects is proposed to determine the edges. Subsequently, pair features with an edge description are noted for every point. Finally, a voting scheme based on agglomerative clustering is implemented to determine the optimal transformation.

Findings

The proposed method not only improves registration efficiency but also maintains high accuracy compared to several commonly used approaches. In particular, for objects composed of plates, the results of pose estimation are more promising because of the compact pair feature. The multiple ship longitudinal localization experiment validates the effectiveness in real scan applications.

Originality/value

The proposed edge description performs a better detection for the edges of multiplate objects. The pair feature incorporating the edge indicator is more discriminative than the original template, resulting in better robustness to outliers, noise and occlusions.

Details

Robotic Intelligence and Automation, vol. 43 no. 4
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 22 May 2023

Peter G. Kelly, Benjamin H. Gallup and Joseph D. Roy-Mayhew

Many additively manufactured parts suffer from reduced interlayer strength. This anisotropy is necessarily tied to the orientation during manufacture. When individual features on…

1109

Abstract

Purpose

Many additively manufactured parts suffer from reduced interlayer strength. This anisotropy is necessarily tied to the orientation during manufacture. When individual features on a part have conflicting optimal orientations, the part is unavoidably compromised. This paper aims to demonstrate a strategy in which conflicting features can be functionally separated into “co-parts” which are individually aligned in an optimal orientation, selectively reinforced with continuous fiber, printed simultaneously and, finally, assembled into a composite part with substantially improved performance.

Design/methodology/approach

Several candidate parts were selected for co-part decomposition. They were printed as standard fused filament fabrication plastic parts, parts reinforced with continuous fiber in one plane and co-part assemblies both with and without continuous fiber reinforcement (CFR). All parts were loaded until failure. Additionally, parts representative of common suboptimally oriented features (“unit tests”) were similarly printed and tested.

Findings

CFR delivered substantial improvement over unreinforced plastic-only parts in both standard parts and co-part assemblies, as expected. Reinforced parts held up to 2.5x the ultimate load of equivalent plastic-only parts. The co-part strategy delivered even greater improvement, particularly when also reinforced with continuous fiber. Plastic-only co-part assemblies held up to 3.2x the ultimate load of equivalent plastic only parts. Continuous fiber reinforced co-part assemblies held up to 6.4x the ultimate load of equivalent plastic-only parts. Additionally, the thought process behind general co-part design is explored and a vision of simulation-driven automated co-part implementation is discussed.

Originality/value

This technique is a novel way to overcome one of the most common challenges preventing the functional use of additively manufactured parts. It delivers compelling performance with continuous carbon fiber reinforcement in 3D printed parts. Further study could extend the technique to any anisotropic manufacturing method, additive or otherwise.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 April 2024

Chuyu Tang, Hao Wang, Genliang Chen and Shaoqiu Xu

This paper aims to propose a robust method for non-rigid point set registration, using the Gaussian mixture model and accommodating non-rigid transformations. The posterior…

Abstract

Purpose

This paper aims to propose a robust method for non-rigid point set registration, using the Gaussian mixture model and accommodating non-rigid transformations. The posterior probabilities of the mixture model are determined through the proposed integrated feature divergence.

Design/methodology/approach

The method involves an alternating two-step framework, comprising correspondence estimation and subsequent transformation updating. For correspondence estimation, integrated feature divergences including both global and local features, are coupled with deterministic annealing to address the non-convexity problem of registration. For transformation updating, the expectation-maximization iteration scheme is introduced to iteratively refine correspondence and transformation estimation until convergence.

Findings

The experiments confirm that the proposed registration approach exhibits remarkable robustness on deformation, noise, outliers and occlusion for both 2D and 3D point clouds. Furthermore, the proposed method outperforms existing analogous algorithms in terms of time complexity. Application of stabilizing and securing intermodal containers loaded on ships is performed. The results demonstrate that the proposed registration framework exhibits excellent adaptability for real-scan point clouds, and achieves comparatively superior alignments in a shorter time.

Originality/value

The integrated feature divergence, involving both global and local information of points, is proven to be an effective indicator for measuring the reliability of point correspondences. This inclusion prevents premature convergence, resulting in more robust registration results for our proposed method. Simultaneously, the total operating time is reduced due to a lower number of iterations.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 7 March 2023

Muthuram N. and Saravanan S.

This paper aims to improve the life of the printed circuit boards (PCB) used in computers based on modal analysis by increasing the natural frequency of the PCB assembly.

Abstract

Purpose

This paper aims to improve the life of the printed circuit boards (PCB) used in computers based on modal analysis by increasing the natural frequency of the PCB assembly.

Design/methodology/approach

In this work, through experiments and numerical simulations, an attempt has been made to increase the fundamental natural frequency of the PCB assembly as high as practically achievable so as to minimize the impacts of dynamic loads acting on it. An optimization tool in the finite element software (ANSYS) was used to search the specified design space for the optimal support location of the six fastening screws.

Findings

It is observed that by changing the support locations based on the optimization results the fundamental natural frequency can be raised up to 51.1% and the same is validated experimentally.

Research limitations/implications

Manufacturers of PCBs used in computers fix the support locations based on symmetric feature of the board not on the dynamic behavior of the assembly. This work might lead manufacturers to redesign the location of other surface mount components.

Practical implications

This work provides guidelines for PCB manufacturers to finalize their support locating points which will improve the dynamic characteristics of the PCB assembly during its functioning.

Originality/value

This study provides a novel method to improve the life of PCB based on support locations optimization which includes majority of the surface mount components that contributes to the total mass the PCB assembly.

Details

Microelectronics International, vol. 41 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 19 June 2023

Shuang-Gao Li, Wenmin Chu, Xiang Huang and Jinggang Xu

In the digital assembly system of large aircraft components (LAC), the docking trajectory of LAC is an important factor affecting the docking accuracy and stability of the LAC…

Abstract

Purpose

In the digital assembly system of large aircraft components (LAC), the docking trajectory of LAC is an important factor affecting the docking accuracy and stability of the LAC. The main content of docking trajectory planning is how to move the LAC from the initial posture and position to the target posture and position (TPP). This paper aims to propose a trajectory planning method of LAC based on measured data.

Design/methodology/approach

First, the posture and position error model of the wing is constructed according to the measured data of the measurement points (MPs) and the fork lug joints. Second, the particle swarm optimization algorithm based on the dynamic inertia factor is used to optimize the TPP of the wing. Third, to ensure the efficiency and stability of posture adjustment, the S-shaped curve is used as the motion trajectory of LAC, and the parameters of the trajectory are solved by the generalized multiplier method. Finally, a series of docking experiments are carried out.

Findings

During the process of posture adjustment, the motion of the numerical control locator (NCL) is stable, and the interaction force between the NCLs is always within a reasonable range. After the docking, the MPs are all within the tolerance range, and the coaxiality error of the fork lug hole is less than 0.2 mm.

Originality/value

In this paper, the measured data rather than the theoretical design model is used to solve the TPP, which improves the docking accuracy of LAC. Experiment results show that the proposed trajectory method can complete the LAC docking effectively and improve the docking accuracy.

Details

Robotic Intelligence and Automation, vol. 43 no. 3
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 1 September 2023

Diego Augusto de Jesus Pacheco and Thomas Schougaard

This study aims to investigate how to identify and address production levelling problems in assembly lines utilising an intensive manual workforce when higher productivity levels…

Abstract

Purpose

This study aims to investigate how to identify and address production levelling problems in assembly lines utilising an intensive manual workforce when higher productivity levels are urgently requested to meet market demands.

Design/methodology/approach

A mixed-methods approach was used in the research design, integrating case study analysis, interviews and qualitative/quantitative data collection and analysis. The methodology implemented also introduces to the literature on operational performance a novel combination of data analysis methods by introducing the use of the Natural Language Understanding (NLU) methods.

Findings

First, the findings unveil the impacts on operational performance that transportation, limited documentation and waiting times play in assembly lines composed of an intensive workforce. Second, the paper unveils the understanding of the role that a limited understanding of how the assembly line functions play in productivity. Finally, the authors provide actionable insights into the levelling problems in manual assembly lines.

Practical implications

This research supports industries operating assembly lines with intensive utilisation of manual workforce to improve operational performance. The paper also proposed a novel conceptual model prescriptively guiding quick and long-term improvements in intensive manual workforce assembly lines. The article assists industrial decision-makers with subsequent turnaround strategies to ensure higher efficiency levels requested by the market.

Originality/value

The paper offers actionable findings relevant to other manual assembly lines utilising an intensive workforce looking to improve operational performance. Some of the methods and strategies examined in this study to improve productivity require minimal capital investments. Lastly, the study contributes to the empirical literature by identifying production levelling problems in a real context.

Details

International Journal of Productivity and Performance Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0401

Keywords

Book part
Publication date: 19 April 2024

Lars Mjøset, Roel Meijer, Nils Butenschøn and Kristian Berg Harpviken

This study employs Stein Rokkan's methodological approach to analyse state formation in the Greater Middle East. It develops a conceptual framework distinguishing colonial…

Abstract

This study employs Stein Rokkan's methodological approach to analyse state formation in the Greater Middle East. It develops a conceptual framework distinguishing colonial, populist and democratic pacts, suitable for analysis of state formation and nation-building through to the present period. The framework relies on historical institutionalism. The methodology, however, is Rokkan's. The initial conceptual analysis also specifies differences between European and the Middle Eastern state formation processes. It is followed by a brief and selective discussion of historical preconditions. Next, the method of plotting singular cases into conceptual-typological maps is applied to 20 cases in the Greater Middle East (including Afghanistan, Iran and Turkey). For reasons of space, the empirical analysis is limited to the colonial period (1870s to the end of World War 1). Three typologies are combined into one conceptual-typological map of this period. The vertical left-hand axis provides a composite typology that clarifies cultural-territorial preconditions. The horizontal axis specifies transformations of the region's agrarian class structures since the mid-19th century reforms. The right-hand vertical axis provides a four-layered typology of processes of external intervention. A final section presents selected comparative case reconstructions. To the authors' knowledge, this is the first time such a Rokkan-style conceptual-typological map has been constructed for a non-European region.

Details

A Comparative Historical and Typological Approach to the Middle Eastern State System
Type: Book
ISBN: 978-1-83753-122-6

Keywords

1 – 10 of over 1000