Search results

1 – 10 of over 6000
Article
Publication date: 13 March 2017

H. Siddhi Jailani, A. Rajadurai, B. Mohan and T. Sornakumar

Metal matrix composites (MMCs) are commonly used in many aerospace and industrial applications. MMCs possess significantly improved properties including high specific strength…

Abstract

Purpose

Metal matrix composites (MMCs) are commonly used in many aerospace and industrial applications. MMCs possess significantly improved properties including high specific strength, specific modulus, damping capacity and good wear resistance compared to unreinforced alloys. The purpose of this paper is to describe the tribological studies of Al-Si alloy–fly ash composites manufactured using powder metallurgy technique.

Design/methodology/approach

Al-Si (12 Wt.%) alloy–fly ash composites were developed using powder metallurgy technique. Al-Si alloy powder was used as matrix material, and the fly ash was used as reinforcement. The particle size of Al-Si alloy powder was in the range of 75-300 μm, and the fly ash was in the range of 1-15 μm. The friction and wear characteristics of the composites were studied using a pin-on-disc set up. The test specimen was mated against cast iron disc, and the tests were conducted with the loads of 10, 20 and 30 N, sliding speeds of 0.5, 1 and 1.5 m/s for a sliding distance of 2,000 m.

Findings

The effects of load and sliding speed on tribological properties of the base alloy and Al-Si alloy–fly ash composites pins on sliding with cast iron disc are evaluated. The wear rate of Al-Si alloy–fly ash composites is lower than that of base alloy, and it increases with increasing load and sliding speed. The coefficient of friction of Al-Si alloy–fly ash composites is increased as compared with base alloy.

Practical implications

The development of Al-Si alloy–fly ash composites produced by powder metallurgy technique will modernize the automobile and other industries because near net shape at low cost and good mechanical properties are obtained.

Originality/value

There are few papers available on the development and tribological studies of Al-Si alloy–fly ash composites produced by powder metallurgy technique.

Details

Industrial Lubrication and Tribology, vol. 69 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Book part
Publication date: 4 May 2018

Khusrizal, Basyaruddin, R.D.H. Rambe and I. Setiawan

Purpose – The research was carried out in order to study the composition of minerals, content of total-K, total-Ca, total-Mg, and exchangeable of K, Ca, Mg in volcanish ash from…

Abstract

Purpose – The research was carried out in order to study the composition of minerals, content of total-K, total-Ca, total-Mg, and exchangeable of K, Ca, Mg in volcanish ash from Sinabung volcano eruption.

Design/Methodology/Approach – The volcanic ash material in amount of 5 kg was collected from the depth of 0–20 cm and 21–41 cm. Mineral composition was determined by using line counting method; total contents of K, Ca, and Mg were measured by HCl 1N extraction, and exchangeable of K, Ca, and Mg was measured by NH4OAc 1N pH 7.0 extraction.

Purpose – The results depicted in volcanic ash layer at the depth of 0–20 cm found some minerals such as plagioclase (34%), hypersthene (9%), augite (3%), hornblende/amphibole (5%), and volcanic glass (1%). These minerals were also found in different amounts at a depth of 21–41 cm. Hypersthene and amphibole were higher and augite was lower at a depth of 0–20 cm than 21–41 cm. The total content of K, Ca, and Mg was found to be 2.27%, 8.12%, and 2.28%, respectively, at a depth of 0–20 cm. The exchangeable of K, Ca, and Mg was found in an amount of 1.89 me/100 g, 20.71 me/100 g, and 1.62 me/100 g, respectively. The total content of K, Ca, and Mg was not available to plants but could potentially be as a source of plant nutrient after weathering while exchangeable form can be uptaken by plant directly.

Research Limitations/Implications – Based on the composition of the minerals, total, and exchangeable of K, Ca, and Mg that the material of volcanic ash, it could potentially be used as source of fertilizers.

Originality/Value – The composition of primary minerals contained in volcanic ash and to know the amount of elements K, Ca, and Mg-associated minerals either in total or exchange.

Details

Proceedings of MICoMS 2017
Type: Book
ISBN:

Keywords

Article
Publication date: 23 December 2022

Victoria Crittenden and William Crittenden

As a business executive and philanthropist, Mary Kay Ash is legendary as a glass-ceiling breaker. With the belief that Mary Kay Ash is both modern and relevant, while…

Abstract

Purpose

As a business executive and philanthropist, Mary Kay Ash is legendary as a glass-ceiling breaker. With the belief that Mary Kay Ash is both modern and relevant, while simultaneously legendary, the overall purpose of this paper is to explore the role of Mary Kay Ash as an influential entrepreneur. This research responds to the call by Cogliser and Brigham (2004) for an increased understanding of how entrepreneurial leaders influence, challenge, inspire and develop followers.

Design/methodology/approach

Following on research by Hoppe (2013), this objective was accomplished via a pentadic analysis of Mary Kay Ash’s rhetoric aimed to influence the mental mindset of readers (followers) over the course of generations. Burke’s pentad was the sense-making tool used for examining Ash’s rhetoric of influence as an entrepreneurial leader. The data used in the pentadic analysis were also analyzed via Linguistic Inquiry and Word Count (LIWC) and IBM Watson Emotion Analysis to see where analyses might converge or diverge.

Findings

Based on the analysis of her written work, Mary Kay Ash resided at the intersection of leadership and entrepreneurship and, in so doing, was an influencer. Her primary rhetorical approach to influencing was idealism. Interwoven in her writings, she also exhibited both pragmatism and realism. She knew that she had to start the business to have the future she desired and that she needed to train her team appropriately for success to be forthcoming. The motivation in Mary Kay Ash’s rhetoric was that of influencing people so they would be the best that they could be.

Research limitations/implications

Qualitative research brings with it an array of inevitable research problems. Pentadic analysis cannot be judged by the basic objective standards of reliability and validity because objective reality does not exist in personal interpretation. That is, one person as a critic cannot be impartial because the interpretation is only one personal way of viewing the data and another critic might view the same pentads and come up with different ratios. With this subjectivity in mind, however, the data used in the pentadic analysis were also analyzed via LIWC and IBM Watson Emotion Analysis to see where analyses might converge or diverge.

Practical implications

The findings from this research denote clearly that Mary Kay Ash was a forerunner of the modern day influencer. As a primogenitor of the influencer marketing phenomenon, Mary Kay Ash’s entrepreneurial legacy is expected to continue through generations of followers. This finding speaks to the importance of today’s entrepreneurs using the spoken and written word to influence others and create a lasting organizational legacy.

Originality/value

Countless scholars have used pentadic analysis, with a variety of artifacts, to examine the motives behind the rhetoric. However, rhetoric as a means of persuasion and influence has received little attention within the context of the written works by management gurus (Jones et al., 2009), and, aside from the exploration by Berglund and Wigren (2012), the narrative of entrepreneurial influence has not benefitted from close examination.

Details

Journal of Research in Marketing and Entrepreneurship, vol. 25 no. 3
Type: Research Article
ISSN: 1471-5201

Keywords

Article
Publication date: 1 December 1998

I.V. Suresh, C. Padmakar, Prabha Padmakaran, M.V.R.L. Murthy, C.B. Raju, R.N. Yadava and K. Venkata Rao

The potential problems and their consequences due to fly ash disposal have been well studied around the world. Ash pond is a common available disposal facility for thermal power…

2159

Abstract

The potential problems and their consequences due to fly ash disposal have been well studied around the world. Ash pond is a common available disposal facility for thermal power plants. The pond ash is subjected to weathering and the ions present in ash migrate to the soil and subsequently to the ground water over a period of time. A study has been carried out at Vijayawada Thermal Power Station (VTPS), Andhra Pradesh, India, to monitor the ground water quality in order to determine the potential impact of ash ponds. It has been found that ground water quality is deteriorated due to the presence of fly ash ions (macro and micro such as Fe, Ca, Mg etc.) which were leached out from the ash up to some extent. The contamination is likely to increase in the case of toxic and other ions with the passage of time. The presence of vegetative cover and plant growth on the down stream slope and fly ash ponds which are covered by soil may effectively control the leaching of ions.

Details

Environmental Management and Health, vol. 9 no. 5
Type: Research Article
ISSN: 0956-6163

Keywords

Article
Publication date: 24 February 2020

Eric Asa, Monisha Shrestha, Edmund Baffoe-Twum and Bright Awuku

Environmental issues caused by the production of Portland cement have led to it being replaced by waste materials such as fly ash, which is more economical and safer for the…

Abstract

Purpose

Environmental issues caused by the production of Portland cement have led to it being replaced by waste materials such as fly ash, which is more economical and safer for the environment. Also, fly ash is a material with sustainable properties. Therefore, this paper aims to focus on the development of sustainable construction materials using 100% high-calcium fly ash and potassium hydroxide (KOH)-based alkaline solution and study the engineering properties of the resulting fly ash-based geopolymer concrete. Laboratory tests were conducted to determine the mechanical properties of the geopolymer concrete such as compressive strength, flexural strength, curing time and slump. In phase I of the study, carbon nanotubes (CNTs) were added to determine their effect on the strength of the geopolymer mortar. The results derived from the experiments indicate that mortar and concrete made with 100% fly ash C require an alkaline solution to produce similar (comparable) strength characteristics as Portland cement concrete. However, it was determined that increasing the amount of KOH generates a considerable amount of heat causing the concrete to cure too quickly; therefore, it is notable to forming a proper bond was unable to form a stronger bond. This study also determined that the addition of CNTs to the mix makes the geopolymer concrete tougher than the traditional concrete without CNT.

Design/methodology/approach

Tests were conducted to determine properties of the geopolymer concrete such as compressive strength, flexural strength, curing time and slump. In Phase I of the study, CNTs were studied to determine their effect on the strength of the geopolymer mortar.

Findings

The results derived from the experiments indicate that mortar and concrete made with 100% fly ash C require an alkaline solution to produce the same strength characteristics as Portland cement concrete. However, it was determined that increasing the amount of KOH generates too much heat causing the concrete to cure too quickly; therefore, it is notable to forming a proper bond. This study also determined that the addition of CNTs to the mix makes the concrete tougher than concrete without CNT.

Originality/value

This study was conducted at the construction engineering and management concrete laboratory at North Dakota State University in Fargo, North Dakota. All the experiments were conducted and analyzed by the authors.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 16 September 2013

S. Venkat Prasat and R. Subramanian

The purpose of this paper is to explore the use of fly ash and graphite particles as low cost reinforcing materials for improved wear resistance, enhanced mechanical properties…

Abstract

Purpose

The purpose of this paper is to explore the use of fly ash and graphite particles as low cost reinforcing materials for improved wear resistance, enhanced mechanical properties and reduction in density of hybrid composites.

Design/methodology/approach

The AlSi10Mg/fly ash/graphite (Al/FA/Gr) hybrid composite was synthesised by stir casting method. The dry sliding wear and friction behaviour of hybrid composites were studied using pin-on-disc machine by varying parameters like load and weight fraction of fly ash, and compared with the base metal alloy and aluminium-graphite composite. The tests were conducted with a constant sliding speed of 2 m/s and sliding distance of 2,400 m.

Findings

The hybrid composites exhibit higher hardness, higher tensile strength and lower density when compared to unreinforced alloy and aluminium-graphite composite. The incorporation of fly ash and graphite particles as reinforcements caused a reduction in the wear rate and coefficient of friction (COF) of the hybrid composites. The improvement in the tribological characteristics occured due to the load carrying capacity of hard fly ash particles and the formation of a lubricating film of graphite between the sliding interfaces. The wear rates and COF of unreinforced aluminium alloy and composites increase with an increase in the applied normal load. The wear rates and COF of hybrid composites decrease with an increase in the fly ash content. 9 wt.% fly ash and 3 wt.% graphite reinforced hybrid composite exhibited the highest wear resistance and lowest COF at all applied loads. Abrasive wear and delamination were dominant in the mild wear regime of aluminium alloy and composites. Due to subsurface deformation and crack propagation, plate-like wear debris were generated during delamination wear. In the severe wear regime, the dominant wear mechanism was adhesive wear with formation of transfer layers.

Practical implications

It is expected that these findings will contribute towards the development of lightweight and low cost aluminium products with improved tribological and mechanical properties.

Originality/value

The wear and friction data have been made available in this article for the use of Al/FA/Gr hybrid composites in tribological applications.

Details

Industrial Lubrication and Tribology, vol. 65 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 June 2018

Shubham Raj, Amrendra Kumar Rai and Vasant G. Havanagi

Industrial wastes such as copper slag and fly ash are being generated in tons every year and disposed mainly by land fillings, resulting in wastage of useful land. Copper slag in…

Abstract

Purpose

Industrial wastes such as copper slag and fly ash are being generated in tons every year and disposed mainly by land fillings, resulting in wastage of useful land. Copper slag in itself is a granular cohesionless sand-like material, while fly ash is highly pozzolanic. The purpose of this paper is to investigate copper slag and fly ash mixes with cement as stabilizer for their proper use in road construction.

Design/methodology/approach

Different trial mixes of copper slag and fly ash were tested for obtaining the optimum mix having maximum dry density. Cylindrical specimens were prepared using optimum mix with different proportion of cement (3, 6 and 9 per cent) and cured for period of 7, 14 and 28 days in desiccator. Several tests such as proctor test, unconfined compressive strength test, splitting tensile strength test and soaked CBR test were carried out.

Findings

After analyzing the variation of test results with varying cement content and curing period, maximum compressive strength of 10 MPa and maximum tensile strength of 1.5 MPa was found for specimen having 9 per cent cement content cured for a period of 28 days. It was concluded that copper slag and fly ash when mixed in optimum proportion and stabilized with 6 and 9 per cent cement can be effectively used as granular material in sub base and base layer of road pavement.

Originality/value

A typical flexible pavement section was designed and checked using IITPAVE software which gave desired results. This paper may add value in the areas of pavement design, waste utilization, etc.

Details

World Journal of Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 September 2015

Hüsamettin Kus and Duran Altiparmak

– The purpose of this paper is to investigate the effect of fly ash content on the friction–wear performance of bronze-based brake lining material.

Abstract

Purpose

The purpose of this paper is to investigate the effect of fly ash content on the friction–wear performance of bronze-based brake lining material.

Design/methodology/approach

In this study, bronze-based brake linings containing 0-12 weight per cent fly ash were produced by the hot-pressing process. The friction-wear properties of the unreinforced bronze matrix brake lining material and fly ash reinforced samples were investigated using a Chase-type friction tester. The hardness and density of the samples were also determined. The microstructures and friction surfaces of the samples were examined using scanning electron microscopy.

Findings

The experimental results showed that the fly ash content significantly affects the friction-wear properties of the brake lining material. It was found that the friction coefficient increases with the increase in the fly ash content for the brake lining materials studied. Moreover, the mass losses in the wear test were lower for the brake linings containing over 4 weight per cent fly ash than unreinforced bronze-based lining material.

Originality/value

This study has proven to be useful in exploring fly ash particles as low cost reinforcing materials in improving the friction–wear performance of bronze-based brake lining material. In addition, the use of fly ash particles in the manufacture of brake lining materials contributes to reducing the production cost of brake linings and to a sustainable environment.

Details

Industrial Lubrication and Tribology, vol. 67 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 July 2021

K. Arunkumar, Muthukannan Muthiah, Suresh Kumar A., Chithambar Ganesh A. and Kanniga Devi R.

Inefficient waste disposal technique and cement production methodology caused significant environmental impacts, leading to global warming. The purpose of the research was to…

Abstract

Purpose

Inefficient waste disposal technique and cement production methodology caused significant environmental impacts, leading to global warming. The purpose of the research was to invent an effective, sustainable technology to use the wastes and alternate for cement in concrete. Geopolymer technology could be the most desirable solution to use the wastes into an effective product.

Design/methodology/approach

The wood waste ash derived from nearby tea shops was used as an alternate binder for fly ash. The replacement of WWA with FA was varied from 0 to 100% at 10% intervals. In this research, setting and mechanical features of Geopolymer Concrete (GPC) along with Waste wood ash (WWA) was carried out. The influence of wood waste ash in the microstructure of the GPC was also assessed using scanning electron microscope and X-ray diffraction analysis.

Findings

The findings revealed that 30% replacement of wood waste ash was performed higher in all measured features. Besides, the formation of different phases was also observed with the inclusion of wood waste ash.

Research limitations/implications

The demand for fly ash was increased in recent years, and the fly-based GPC has required more alkaline solution and temperature curing. Hence, there was a research gap on finding an alternative binder for fly ash.

Originality/value

The research novelty was to use the wood waste ash, which has inbuilt alkaline compounds on the production of sustainable geopolymer. The finding showed that the wood waste ash could be alternate fly ash that eliminates the environmental impacts and economic thrust.

Details

World Journal of Engineering, vol. 19 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 April 2022

Fadillawaty Saleh, Muhammad Adhi Gunawan, Tri Ismarani Yolanda, Fanny Monika, Hakas Prayuda, Martyana Dwi Cahyati and Muhammad Mirza Abdillah Pratama

This study aims to investigate the properties of mortar made from a bottom ash substitute as a sustainable construction material. It is believed that the use of cement in concrete…

Abstract

Purpose

This study aims to investigate the properties of mortar made from a bottom ash substitute as a sustainable construction material. It is believed that the use of cement in concrete construction contributes to the release of carbon dioxide into the atmosphere, which has been a consistent increase in recent years. The utilization of bottom ash waste is expected to reduce pollution associated with cement production.

Design/methodology/approach

Bottom ash is used as replacement materials for cement and fine aggregate in the manufacture of mortar. Bottom ash substituted for cement of 10%, 20% and 30% of the total weight of the binder, whereas bottom ash substituted for the fine aggregate of 30%, 40% and 50% of the total weight of the sand. Binder properties were determined using scanning electron microscopy and energy dispersive X-ray. Meanwhile, the fresh properties (slump flow) and hardened properties were determined (compressive strength and mass density). In the hardened properties test, two types of curing were used: water and sealed curing.

Findings

The compressive strength of mortar decreased as the amount of bottom ash as cement replacement. However, the compressive strength increased when bottom ash was used as aggregate replacement. Additionally, bottom ash was sufficient as a substitute for fine aggregate than as a substitute for cement.

Originality/value

This research presents test results that are more straightforward to apply in the construction site.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of over 6000