Search results

1 – 6 of 6
Open Access
Article
Publication date: 9 May 2022

Kevin Wang and Peter Alexander Muennig

The study explores how Taiwan’s electronic health data systems can be used to build algorithms that reduce or eliminate medical errors and to advance precision medicine.

1772

Abstract

Purpose

The study explores how Taiwan’s electronic health data systems can be used to build algorithms that reduce or eliminate medical errors and to advance precision medicine.

Design/methodology/approach

This study is a narrative review of the literature.

Findings

The body of medical knowledge has grown far too large for human clinicians to parse. In theory, electronic health records could augment clinical decision-making with electronic clinical decision support systems (CDSSs). However, computer scientists and clinicians have made remarkably little progress in building CDSSs, because health data tend to be siloed across many different systems that are not interoperable and cannot be linked using common identifiers. As a result, medicine in the USA is often practiced inconsistently with poor adherence to the best preventive and clinical practices. Poor information technology infrastructure contributes to medical errors and waste, resulting in suboptimal care and tens of thousands of premature deaths every year. Taiwan’s national health system, in contrast, is underpinned by a coordinated system of electronic data systems but remains underutilized. In this paper, the authors present a theoretical path toward developing artificial intelligence (AI)-driven CDSS systems using Taiwan’s National Health Insurance Research Database. Such a system could in theory not only optimize care and prevent clinical errors but also empower patients to track their progress in achieving their personal health goals.

Originality/value

While research teams have previously built AI systems with limited applications, this study provides a framework for building global AI-based CDSS systems using one of the world’s few unified electronic health data systems.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 7 October 2021

Enas M.F. El Houby

Diabetic retinopathy (DR) is one of the dangerous complications of diabetes. Its grade level must be tracked to manage its progress and to start the appropriate decision for…

2565

Abstract

Purpose

Diabetic retinopathy (DR) is one of the dangerous complications of diabetes. Its grade level must be tracked to manage its progress and to start the appropriate decision for treatment in time. Effective automated methods for the detection of DR and the classification of its severity stage are necessary to reduce the burden on ophthalmologists and diagnostic contradictions among manual readers.

Design/methodology/approach

In this research, convolutional neural network (CNN) was used based on colored retinal fundus images for the detection of DR and classification of its stages. CNN can recognize sophisticated features on the retina and provides an automatic diagnosis. The pre-trained VGG-16 CNN model was applied using a transfer learning (TL) approach to utilize the already learned parameters in the detection.

Findings

By conducting different experiments set up with different severity groupings, the achieved results are promising. The best-achieved accuracies for 2-class, 3-class, 4-class and 5-class classifications are 86.5, 80.5, 63.5 and 73.7, respectively.

Originality/value

In this research, VGG-16 was used to detect and classify DR stages using the TL approach. Different combinations of classes were used in the classification of DR severity stages to illustrate the ability of the model to differentiate between the classes and verify the effect of these changes on the performance of the model.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 4 April 2024

Yanmin Zhou, Zheng Yan, Ye Yang, Zhipeng Wang, Ping Lu, Philip F. Yuan and Bin He

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing…

Abstract

Purpose

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing system is essential for intelligent robots with various types of sensors. To mimic human-like abilities, sensors similar to human perception capabilities are indispensable. However, most research only concentrated on analyzing literature on single-modal sensors and their robotics application.

Design/methodology/approach

This study presents a systematic review of five bioinspired senses, especially considering a brief introduction of multimodal sensing applications and predicting current trends and future directions of this field, which may have continuous enlightenments.

Findings

This review shows that bioinspired sensors can enable robots to better understand the environment, and multiple sensor combinations can support the robot’s ability to behave intelligently.

Originality/value

The review starts with a brief survey of the biological sensing mechanisms of the five senses, which are followed by their bioinspired electronic counterparts. Their applications in the robots are then reviewed as another emphasis, covering the main application scopes of localization and navigation, objection identification, dexterous manipulation, compliant interaction and so on. Finally, the trends, difficulties and challenges of this research were discussed to help guide future research on intelligent robot sensors.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 15 July 2019

Per Kristensson

The purpose of this paper is to propose a framework for understanding, predicting and analyzing how future service technologies can lead to value co-creation at different stages…

7025

Abstract

Purpose

The purpose of this paper is to propose a framework for understanding, predicting and analyzing how future service technologies can lead to value co-creation at different stages of a value chain.

Design/methodology/approach

For organizations, future service technologies are growing in importance and will become a crucial means to survival. It is clear that future service technologies will increase the opportunity to reduce costs and create efficiency, but it is not equally clear how future service technologies enable value creation for customers and users. On this premise, the study proposes a conceptual framework.

Findings

The framework illustrates how future service technologies can lead to value creation for customers. The paper also portrays opportunities and potential pitfalls with future service technologies for organizations.

Originality/value

Several researchers are focusing on innovative technologies. Many business companies are talking about how to implement them and increase their profit. However, less attention is devoted to the ways in which future service technologies will lead to benefits and the experience of service for customers and users using them. This paper represents an original attempt to illustrate that.

Details

Journal of Services Marketing, vol. 33 no. 4
Type: Research Article
ISSN: 0887-6045

Keywords

Open Access
Article
Publication date: 1 June 2023

Edward Ayebeng Botchway, Kofi Agyekum, Hayford Pittri and Anthony Lamina

This study explores the importance of and vulnerabilities in deploying physical access control (PAC) devices in a typical university setting.

Abstract

Purpose

This study explores the importance of and vulnerabilities in deploying physical access control (PAC) devices in a typical university setting.

Design/methodology/approach

The study adopts face-to-face and telephone interviews. This study uses a semi-structured interview guide to solicit the views of 25 interviewees on the subject under consideration. Qualitative responses to the interview are thematically analyzed using NVivo 11 Pro analysis application software.

Findings

The findings reveal five importance and seven vulnerabilities in the deployment of PAC devices in the institution. Key among the importance of deploying the devices are “prevent unwanted premise access or intrusions,” “prevent disruptions to university/staff operations on campus” and “protect students and staff from outside intruders.” Key among the identified vulnerabilities are “tailgating”, “delay in emergent cases” and “power outage may affect its usage.”

Originality/value

This study offers insight into a rare area of study, especially in the Sub-Saharan Africa region. Furthermore, the study contributes to the state-of-the-art importance and vulnerabilities in deploying PAC devices in daily human activities. The study is valuable in that it has the potential to establish a foundation for future studies that may delve into investigating issues associated with the deployment of PAC devices.

Details

Frontiers in Engineering and Built Environment, vol. 4 no. 1
Type: Research Article
ISSN: 2634-2499

Keywords

Open Access
Article
Publication date: 6 December 2022

Worapan Kusakunniran, Sarattha Karnjanapreechakorn, Pitipol Choopong, Thanongchai Siriapisith, Nattaporn Tesavibul, Nopasak Phasukkijwatana, Supalert Prakhunhungsit and Sutasinee Boonsopon

This paper aims to propose a solution for detecting and grading diabetic retinopathy (DR) in retinal images using a convolutional neural network (CNN)-based approach. It could…

1242

Abstract

Purpose

This paper aims to propose a solution for detecting and grading diabetic retinopathy (DR) in retinal images using a convolutional neural network (CNN)-based approach. It could classify input retinal images into a normal class or an abnormal class, which would be further split into four stages of abnormalities automatically.

Design/methodology/approach

The proposed solution is developed based on a newly proposed CNN architecture, namely, DeepRoot. It consists of one main branch, which is connected by two side branches. The main branch is responsible for the primary feature extractor of both high-level and low-level features of retinal images. Then, the side branches further extract more complex and detailed features from the features outputted from the main branch. They are designed to capture details of small traces of DR in retinal images, using modified zoom-in/zoom-out and attention layers.

Findings

The proposed method is trained, validated and tested on the Kaggle dataset. The regularization of the trained model is evaluated using unseen data samples, which were self-collected from a real scenario from a hospital. It achieves a promising performance with a sensitivity of 98.18% under the two classes scenario.

Originality/value

The new CNN-based architecture (i.e. DeepRoot) is introduced with the concept of a multi-branch network. It could assist in solving a problem of an unbalanced dataset, especially when there are common characteristics across different classes (i.e. four stages of DR). Different classes could be outputted at different depths of the network.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

1 – 6 of 6